• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.031 seconds

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer

  • Krasnov, Andrey;Legotin, Sergey;Kuzmina, Ksenia;Ershova, Nadezhda;Rogozev, Boris
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1978-1982
    • /
    • 2019
  • The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.

Strength Evaluation of a Doubler Plate of Ship Structure subjected to the In-plane Combined Load and Lateral Pressure Load (면내 조합하중과 횡압을 받는 선박 이중판의 강도 평가)

  • Ham, Juh-Hyeok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.37-48
    • /
    • 2003
  • A study for the structural strength evaluation of doubler plates subjected to the in-plane combined load and lateral pressure load has been performed through a systematic evaluation process. In order to properly estimate the static strength of doubler plate, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on the analysis results. Also, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of fiat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested In order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent plate thickness formula and the developed buckling strength formulas for intact plates by author et al. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

Elucidation of Corrosion and Failure of Stainless Steel Tubing buried in Soil for Potable Water (토양매설 스테인리스강 상수도 배관의 부식원인 규명)

  • Kim, Young Sik;Park, Soojin;Hwangbo, Deok;Shin, Mincheol
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Since buried pipes contact the soil directly, corrosion by the soil could be occurred. Recently, some stainless steel pipes after 8 years burial at G area were corroded and leaked. In order to elucidate highly corroded phenomena(its rate was about 0.175 mm/y) of these pipes, the investigation for corrosion environment, soil, stray current's effect, and chemical analysis on the pipes were performed. Most of investigated sites were close to traditional water-closet and showed high moisture and thus those areas could be highly corrosive. In the investigation by two kinds of soil evaluation methods, it was revealed that the soils at G areas were highly corrosive, and moreover the contents of sulfate reducing bacteria in the soils were high. Also, open circuit potentials of many pipes showed different values and its potentials were high positive. Therefore, it was considered that corrosion of buried pipes at G area could be affected by high corrosive soil's environment and stray current corrosion.

Poly(ethylene terephthalate)(PET) Nanocomposites Filled with Fumed Silicas by Melt Compounding

  • Chung, Su-Chul;Hahm, Wan-Gyu;Im, Seung-Soon;Oh, Seong-Geun
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.221-229
    • /
    • 2002
  • PET nanocomposites filled with fumed silicas were prepared via direct melt compounding method at various mixing conditions such as filler type and filler content. Some fumed silicas were pre-treated to improve the wettability and dispersibility, and principal characterizations were performed to investigate the effects of nano fumed silicas on polymer matrix. Hydrophobic fumed silica (M-FS), which has the similar contact angles of water with neat PET, acted as the best reinforcement for the thermal stability and mechanical properties of PET nanocomposite, and FE-SEM images also showed that M-FS was uniformly dispersed into matrix and had good wettability. But, some filler (O-FS) had low dispersibility and caused the deterioration of mechanical properties. Besides, the results of DSC revealed the nucleation effect of all fillers in polymer matrix, and PET nanocomposite filled with hydroptilic fumed silica (FS) showed markedly the characteristic dynamic rheological properties such as shear thinning behavior at very low frequencies and the decrease of viscosity.

Development of Measurement System for Deflection of the Large-Size FPD (대면적 평판 디스플레이용 유리기판의 처짐 측정장치 개발)

  • Kim, Sook-Han;Kim, Tae-Sik;Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • There is a need to enlarge the mother glass substrate in OLED to raise its productivity and to realize OLED TV. On the other hand, some difficulties may arise regarding the deflection of a large glass substrate during its handling operation due to its thinness $(0.5\sim0.7t)$, which is not even enough to allow it to stand its own mass. This thesis proposes a conceptual plan for the application of the clamping- and bending-end conditions to the glass substrate handler. To verify proposed plan, the non-contact 3 dimensional measuring instrument is developed. The composition of the 3 dimensional measuring instrument measures shape of the product using X-Y stage robot and laser distance sensor. X-Y stage robot and laser distance sensor are controlled by LabVIEW language. To calibrate measuring instrument, the direction conversion of the Euler angle was used. In order to confirm deflection of the glass substrate, the experiment was carried out at the bending end boundary condition and the proposed effect was verified.

  • PDF

An Analysis of Flow Phenomena in Shock Tube System Design(I)-Comparison of Experimental and Computation Result- (충격파관 장치설계를 위한 유동현상의 해석(1)-계산치와 실험치의 비교-)

  • 정진도;수곡행부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1218-1226
    • /
    • 1994
  • The shock tube is a useful device for investigating shock phenomena, spray combustion, unsteady gas dynamics, etc. Therefore, it is necessary to analyze exactly the flow phenomena in shock tube. In this study, the mechanics of its reflected shock zone has been investigated by using of the one-dimensional gas dynamic theory in order to estimate the transition from initial reflection of shock wave region. Calulation for four kinds of reflected shock tube temperature (i.e. (a) 1388 K (b) 1276 K (c) 1168 K (d) 1073 K) corresponding to the experimental conditions have been carried out sumarized as follows. (1) The qualitative tendency is almost the same as in that conditions in region of reflected wave region. (2) High temperature period (reflected shock wave temperature) $T_{5}$, exists 0-2.65 ms. (3) Transition period from temperature of reflection shock wave is far longer than the calculated one. This principally attributed to the fact that the contact surface is accelerated, also, due to the release of energy by viscoity effect. This apparatus can advance the ignition process of a spray in a ideal condition that involved neither atomization nor turbulent mixing process, where, using a shock tube, a column of droplets freely from atomizer was ignited behind a reflected shock.

Effect on Vibration of Start-up Condition and Retrofit of Steam Turbines (증기터빈의 기동조건과 성능개선이 터빈의 진동에 미치는 영향)

  • Lee, Hyuk Soon;Chung, Hyuk Jin;Song, Woo Sok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • The analysis shows that the vibration is one of the main reasons of turbine failure. Especially, the problems caused by vibration occur right after retrofit of the turbine-generator and restarting the turbine. Through the case study of high vibration caused by after the turbine trip and restart, turbine vibration was identified to be influenced by startup condition. Turbine startup at high casing temperature right after unscheduled turbine trip cause radial expansion in rotor by contraction in axial direction, while casing continues to contract by steam flowing into casing. Consequently, gap between rotor and casing decrease until to metal contact to cause high vibration. Through the case study of high vibration of turbine-generator system after generator retrofit, it was identified that generator replacement could cause high vibration in turbine-generator system if the influence of generator replacement on entire system was not considered properly. To prevent startup delay caused by high vibration, it is important to keep the gaps at the design standard and start the turbine after thermal equilibrium.

An Experimental Study on the Effect of Valve Train Design Parameters on the Diesel Engine Valve Rotation (디젤엔진의 밸브회전에 미치는 밸브트레인 설계변수들의 영향에 관한 실험적 연구)

  • Kim, Do-Joong;Jeong, Young-Jong;Lee, Jung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper we present the effects that valve train design parameters and operating conditions have on the valve rotation properties of a diesel engine. Rotation of intake and exhaust valves are very closely related to the long term durability of diesel engines. of the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. Because the rated speed of a diesel engine is relatively lower than that of a gasoline engine, the operating condition of a diesel engine produces tough environment for valve rotation. Therefore, the valve rotation is an important problem which should be solved in the early stage of engine development. In this study, we developed a new technique to measure the valve rotation and shaking motion simultaneously using three proximity sensors. Valve train rotating properties of a diesel engine were measured under various engine operating conditions.

Assessment of kinetics behavior of electrocoagulation process for the removal of suspended solids and metals from synthetic water

  • Singh, Hariraj;Mishra, Brijesh Kumar
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • Globalization, industrialization, mining, and uncontrolled population growth have fostered a shortage of potable water. Therefore, it has become imperative to understand an effective and reasonable water purification technique. A renewed interest in electrocoagulation (EC) has been spurred by the search for reliable, cost-effective, water-treatment processes. This paper has elucidated a technical approach for getting rid of heavy metals and total suspended solids (TSS) from synthetic water using an aluminum electrode. The effect of operational parameters, such as current density, inter-electrode distance, operating time, and pH, were studied and evaluated for maximum efficiency. This study corroborates the correlation between current density and removal efficiency. Neutral pH and a low electrode gap have been found to aid the efficacy of the EC setup. The outcome indicates that a maximum TSS removal efficiency of 76.6% occurred at a current density of $5.3mA/cm^2$ during a contact time of 30 min. In the case of heavy metals remediation, 40 min of process time exhibited extremely reduced rates of 99%, 59.2%, and 82.1%, for Cu, Cr, and Zn, respectively. Moreover, kinetic study has also demonstrated that pollutants removal follows first-and second-order model with current density and EC time being dependent.