• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.032 seconds

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Probabllistic and Shock Analysis of Head-gimbal Assembly in Micro MO Drives (초소형 광자기 드라이브용 HGA의 신뢰성 및 충격 해석)

  • Oh Woo-Seok;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Hong Eo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1347-1353
    • /
    • 2004
  • With respect to the researches of the optical flying head(OFH) , the head-gimbal assembly should be analyzed to guarantee the stable fabrication and the characteristics of shock resistance. The suitable design is proved through the Probabilistic analysis of the design parameters and material properties of the model. Probabilistic analysis is a technique that be used to assess the effect of uncertain input parameters and assumptions on your analysis model. Using a probabilistic analysis you can find out how much the results of a finite elements analysis are affected by uncertainties in the model. Another factor is analysis of the dynamic shock analysis. For the mobile application, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes in contact with outer shock disturbance. the system gets critical damage in head-gimbal assembly or disk. This paper describes probabilistic and dynamic shock analysis of head-gimbal assembly in micro MO drives using OFH slider.

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.416-421
    • /
    • 2002
  • This paper dealt with an experimental study on the hydro-elastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based n the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally, the effect of the submerged depth on the natural frequency was investigated.

  • PDF

Vibration Analysis of Damper System in Torque Converter (토크 컨버터의 댐퍼 진동 특성)

  • Park, Tae-Jun;Kim, Myung-Sik;Jang, Jae-Duk;Joo, In-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.305-310
    • /
    • 2007
  • This paper presents a damper system design in torque converter to minimize the vibration in powertrain of automatic transmission vehicle. The lock-up clutch in torque converter makes engine and transmission connected directly. When the lock-up clutch is engaged the torque fluctuation of engine is attenuated by the damper system. This function decides the vehicle power-train dynamic characteristics. At first, the dynamic hysteresis effect with any self and surface to surface contact problems of the damper springs in the damper system for torque converter is analyzed by using FEM. It is shown that these simulation results have a good design reference to energy dissipation operating by damper system in torque converter. And, to calculate dynamic characteristics, the vehicle model is structured by using $AMESim^{(R)}$?? that is a common use program. The vehicle model shows the frequency response of vehicle by changing the stiffness of damper spring, and these results lead the most suitable stiffness of spring. Also, new damper system is analyzed resonance frequency variation and is compared with prior damper.

  • PDF

The Effect of Iron Oxides $(Fe_2O_3,\;Fe_3O_4)$ on Tribological Characteristics of Automotive Friction Materials (자동차용 마찰재에서 철산화물이 마찰특성에 미치는 영향에 관한 연구)

  • Cho KeunHyung;Jang Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.289-295
    • /
    • 2004
  • The relationship between friction characteristics and iron oxides at the sliding interface was investigated. Three friction materials containing iron, magnetite $(Fe_3O_4)$ or hematite $(Fe_2O_3)$ were manufactured and friction tests were performed on gray cast iron disks to evaluate the friction coefficient as a function of sliding speed $\mu-\nu$. In-situ noise spectrum analyzer was employed to compare noise propensity during friction tests. Results show that the specimens with magnetite are more sensitive to velocity than those with iron or hematite. The specimens containing magnetite and hematite generated noise with different peaks in the spectrum. The difference in the peak frequency seems attributed to the different surface aggressiveness of iron oxides and intermittent changes of real contact area at the sliding interface during sliding. Surface morphology and roughness of the counter disc after the tests are also consistent with the aggressiveness of iron oxides.

  • PDF

Analysis of Frequency Characteristics of Writing Instruments Due to Friction (필기구 마찰의 주파수 특성 분석)

  • Shin, JaeUn;Park, JinHwak;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.148-152
    • /
    • 2017
  • The feel of writing is important to customers when they buy smart devices with stylus such as smartphones and tablet computers. With an aim to reproduce the tactile sensibility of writing instruments when people write on the glass display using a stylus, this study focuses on the frequency characteristics of writing instruments that can describe the vibrations of writing instruments sliding over counter surfaces. In addition, this study includes the effect of various factors influencing the friction of writing instruments such as lubricant, nib material, and contact type. We perform sliding experiments with six types of writing instruments and a sheet of paper to understand the relation between the friction conditions of the nib and the frequency characteristics. As this research focuses on the tactile perception of human skin when people use a writing instrument, the analysis of frequency characteristics is performed in the perceptible frequency range of mechanoreceptors in the human skin. As a result, three types of frequency characteristics are identified. Low frequency peaks are observed for a metal nib with ink; high frequency peaks are observed for a nib without ink; and, middle frequency peaks with a wide range of distribution occurs for fabric nibs with ink. Therefore, to implement the proper feel of writing, at least three types of vibrations have to be made.

Crease Behavior of Thin Membrane (멤브레인의 접힘 거동 연구)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.905-911
    • /
    • 2007
  • In this paper, geometrically and materially non-linear finite element analyses were performed to study the crease behavior of thin membranes. The cross-section of the membrane was modeled with 2-dimensional plane strain elements. To simulate the creasing process, the membrane mesh was folded, compressed to prescribed crease gauge by activating two rigid contact surfaces, and then released to give the crease topology. Various crease gauges were considered to investigate the effect of crease intensity on the initial deployment angle. The crease geometry was also obtained by experiments and the results were compared.

Effect of di-n-butyl-phthalate on cytotoxic activity of natural killer cells in C57BL/6

  • Juno H. Eom;Chung, Seung-Tae;Kim, Jin-Ho;Park, Jae-Hyun;Chung, Hyung-Jin;Hwang, In-Chang;Kim, Dong-Sup;Kim, Hyung-Soo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.114-114
    • /
    • 2001
  • Di-n-butyl phthalate (DBP) is not only a plasticizer and solvent used in industry but also one of endocrine disruptor chemicals, a low level contaminant found in a wide variety of different media ranging from drinking water to infant formulae. To evaluate the cytotoxic function of NK cells in mice after contact with DBP, C57BL/6 female mice were orally dosed with di-n-butyl phthalate (250, 500, or 750 mg/kg body weight) for 14 consecutive days, and the control mice were administered vehicle (corn oil).(omitted)

  • PDF

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

Transparent and Superhydrophobic Films Prepared by Polydimethylsiloxane-Coated Silica nanoparticles

  • Park, Eun Ji;Sim, Jong Ki;Jeong, Myung-Geun;Kim, Young Dok;Lim, Dong Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.218-218
    • /
    • 2013
  • We report a simple and cost-effective method to fabricate transparent superhydrophobic surface on various substrates. The surface was fabricated by coating hydrophobic PDMS (polydimethylsiloxane) film on the silica nanoparticle and subsequent fixing of the hydrophobic silica nanoparticles onto substrates. The water contact angle for the prepared surface was determined to be over $150^{\circ}$, whichindicates that the surface is highly repellent to water. The hierarchical structure and roughness of the surface were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Additionally, transparency of the prepared surface was measured with UV-VIS spectrometer. The transmittance of the superhydrophobic surface was ~80%, which is lower than that without PDMS-coated silica by only 5 to 10%. It is also notable that the superhydrophobic surface fully recovers its original transmittance after self-cleaning process. Also the PDMS coating is stable under a wide range of pH conditions, UV radiation and salinity conditions, which is essential for the practical use. Moreover, our fabrication method is applicable in large scale production.

  • PDF