• 제목/요약/키워드: contact dynamics

검색결과 379건 처리시간 0.021초

A Study on Compliance Robot Using a PID Adaptive Controller (PID 적응 제어기를 이용한 컴플라이언스 로보트에 대한 연구)

  • Kim, Seung-Woo;Kang, Moon-Sik;Koh, Jae-Won;Park, Mign-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제27권2호
    • /
    • pp.105-110
    • /
    • 1990
  • In this paper, a compliance robot control algorithm using a PID adaptive controller is proposed. The compliance robot is suitable for the tasks in contact with environment, such as assembly operation or surface processing. A hybrid robot control method can control force and position simultaneously and two independant feedback closed loops are formed in this method. Because the compliance robot is operated in contact with environment, it is very difficult to obtain linear model of dynamics for this robot. In order to overcome this difficulty, a PID adaptive controller independant of robot dynamics is applied to the compliance robot. The proposed control algorithm for the compliance robot was analyzed and conformed by simulating the surface processing task by a two-joint robot.

  • PDF

Structure Optimization of a Slot-Die Head with a Hydrophobic Micro-Patterns for Stripe Coatings (소수성 마이크로 패턴을 갖는 Stripe 코팅용 슬롯 다이 헤드 구조 최적화)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • 제18권2호
    • /
    • pp.6-10
    • /
    • 2019
  • In the presence of $\mu-tip$ for narrow stripe coating, there appears lateral capillary flow along the hydrophilic head lip because the $\mu-tip$ has some resistance to flow. It was known to be suppressed by increasing the contact angle of the head lip. In this paper, we have demonstrated by computational fluid dynamics(CFD) simulations that it can also be suppressed by the formation of micro-patterns on the shim and meniscus guide embedded into the slot-die head. To optimize the micro-patterned structure, we have performed simulations by varying the groove width, depth, and clearance. In the absence of micro-patterns, it is shown by experiment and simulation that the solution spreads to a distance of $1,300{\mu}m$ from the ${\mu}-tip$. In the presence of micro-patterns with the groove width and clearance of $50{\mu}m$, the distance the solution spreads is reduced to $260{\mu}m$. However, no further suppression in the capillary flow is observed with micro-patterns with the groove width of $40{\mu}m$ or less. It is also observed that the capillary flow is not affected by the groove depth if it is larger than $10{\mu}m$. We have shown that the distance the solution spreads can be reduced further to $204{\mu}m$ by coating a hydrophobic material (contact angle of $104^{\circ}$) on the surface of micro-patterns having the groove width and clearance of $50{\mu}m$.

Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft (항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가)

  • Kim, Dong-Hyeop;Kim, Sang-Woo
    • Journal of Aerospace System Engineering
    • /
    • 제13권4호
    • /
    • pp.66-73
    • /
    • 2019
  • The objective of this study was to evaluate the structural safety of the basic design for the linear actuator for the flap control of aircrafts. The kinetic behavior of the linear actuator was determined using the multi-body dynamics (MBD) analysis, and the contact force was calculated to be used as input data for the structural analysis based on the finite element analysis. In the structural analysis, the thermal and static behaviors of the linear actuator satisfying the designed velocity were examined, and the structural safety of the linear actuator evaluated. Moreover, the dynamic behaviors of the key components of the linear actuator were investigated by the modal analysis. The actuation rod linearly moved with about 5 mm/s when the motor operated at 225 rpm and the maximum contact force of 32.83 N occurred between two driving gears. Meanwhile, the structural analysis revealed that the maximum thermal and static stresses were 1.57% and 78% of the yield strength of steel, respectively, and they were in a safe range of the structure. In addition, the linear actuator for the basic design is stable to the resonance by avoiding the natural frequencies of the components.

Validation of Actuator Gearbox Accelerated Test Method Using Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션을 이용한 작동기용 기어박스 가속시험법 검증)

  • Donggun Lee;Sanggon Moon;Young-Jun Park;Woo-Ram Shim;Sung-Bo Shim;Su-Chul Kim
    • Journal of Drive and Control
    • /
    • 제21권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Gearboxes designed for reciprocating motion operating mechanisms operate under conditions where both the load and speed undergo continuous variations. When conducting durability tests on gearboxes designed for such applications, operating the target gearbox under conditions similar to the intended usage is essential. The gearbox must be operated for the required number of cycles to validate its durability under conditions mirroring its intended usage. This study devised an accelerated test method for gearboxes, which reduces operating angles and operational strokes. The reliability of the accelerated test was verified by comparing the stresses imposed on the gears under general and acceleration conditions through multi-body dynamic simulations. The results confirmed that the maximum contact stress levels under normal and accelerated conditions were within a 0.1% error range, indicating a minimal difference in the gear damage rates. However, a difference in the maximum contact stress results between the normal and accelerated conditions was observed when inertial forces acted on the output shaft due to the operational acceleration of the gearbox. Therefore, when conducting this acceleration test, caution should be exercised to ensure that the operational load on the gearbox, which affects inertia, does not significantly deviate from the conditions observed under normal operating conditions.

A study on the lateral Dynamics of the Moving Web Induced by a Tilted Roller (웹 표면 수직방향으로 기우러진 롤에 의한 측 방향 웹 거동에 대한 연구)

  • Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권12호
    • /
    • pp.209-216
    • /
    • 2000
  • The lateral behavior of the moving web is critical to the quality of the web products. The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web. But, the study on the effect of the tilting roller in the direction of the normal to the moving web on the lateral behavior has not been reported in the literature yet. For example, the contact roller often contacts the winding roll in a tilted fashion and causes the lateral motion of the winding web, which induces the offset on the wound roll. The lateral dynamics of the moving web induced by a tilted roller in normal direction of a web is investigated in this paper. The two-dimensional dynamic model developed by Shelton is extended to investigate the effect of a titled roller in a normal direction of the moving web on the lateral motion of the moving web. New boundary conditions are developed to solve the extended model. Computer simulation study proved that the model developed can be used to predict the lateral motion of the moving web ? to a tilted roller in normal direction of the moving web. The lateral deflection is increased exponentially a the tilting angle is increased. As the length of web span is increased, the amount of lateral deflection was increased almost linearly for the same tilting angle. The lateral dynamics turned out to be almost independent to the operating tension. The model developed can be used to solve the offset problem of the staggered winding and also to design a new web guiding mechanism.

  • PDF

Dynamics and Control of 6-DOF Shaking Table with Bell Crank Structure

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.296-301
    • /
    • 2005
  • This paper describes the kinematics, dynamics and control of a 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. In this shaking table, the bell crank mechanism is used to reduce the amount of space needed to install the shaking table and create horizontal displacement of the platform. In kinematics, joint design is performed using $Gr{\ddot{u}}bler's$ formula. The inverse kinematics of the shaking table is discussed. The derivation of the Jacobian matrix is presented to evaluate singularity conditions. Considering the maximum stroke of the hydraulic actuator, collision between links and singularity, workspace is computed. In dynamics, computations are based on the Newton-Euler formulation. To derive parallel algorithms, each of the contact forces is decomposed into one acting in the direction of the leg and the other acting in the plane orthogonal to the direction of the leg. Applying the Newton-Euler approach, the solution of inverse dynamics is almost completely parallel. Only one of the steps-the application of the Newton-Euler equations to the platform-must be performed on one single processor. Finally, the efficient control scheme is proposed for the tracking control of the motion platform.

  • PDF

Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems (공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향)

  • Na, Byeong-Cheol;Jeon, Gyeong-Jin;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제24권9호
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Design Improvement of the Driving Bevel Gear in Transmissions of a Tracked Vehicle (궤도차량 변속기 구동용 베벨기어의 개선설계)

  • Jung, Jae-Woong;Kim, Kwang-Pil;Ji, Hyun-Chul;Moon, Tae-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. The bevel gears are major components for the transmission of power in a transmission. Increasing the tooth surface roughness and chamfering of the bevel gears, especially, we aim to improve the quality of transmission. In this study, design structural evaluation is conducted on bevel gears of transmission for tracked vehicle using the ROMAX-DESIGNER program. By doing so, design safety of the bevel gears has been evaluated based on the gear strength theory of ANSI/AGMA 2003 B97 standard.

Evaluation of Performance in Semi-Open Type Impeller by Duplex Stainless Material for Ballast Water Centrifugal Pump (듀플렉스 스테인리스강 소재를 응용한 Semi-Open Type 임펠러의 성능 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Gang, Young-Gwan;Lee, Sang-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.345-350
    • /
    • 2014
  • A special usage impeller pump for ballast water treatment is part of an offshore plant's structure. It has to maintain a high corrosion resistance in an extreme environment, in which it can contact several kinds of aqueous solutions. The duplex stainless steel used in such severe environments is known to have corrosion resistance and excellent mechanical properties. This study estimated the performance of an impeller pump system designed using duplex stainless steel through a computational fluid dynamics analysis. As a result, it was determined that the pressure drop increases and the impeller performance is lowered if the equivalent roughness is enlarged. The surface precision of the duplex stainless steel must be consistently maintained. If thisis the case, it was determined that the existing STS steel can be substituted for the Duplex stainless steel.