• Title/Summary/Keyword: consumptions

Search Result 429, Processing Time 0.026 seconds

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

Patient-Controlled Analgesia (PCA) for Post-operative Patients - A Study on Differences according to Who Controls the Analgesic (수술환자의 자가통증조절기 사용 방법에 관한 조사 연구)

  • Lee, Yoon-Young
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.14 no.3
    • /
    • pp.315-322
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the effect of three kinds of modes using bolus button of PCA on level of pain and side effects of analgesic and amount of drug consumption in post-operative patients according to whether the medication is controlled by the patient, the caregiver or the nurse. Method: The participants were 684 patients using PCA after an operation. The data collection period was from March 19 to April 6, 2007. Results: It was found that there were statistical differences in gender, age, type of surgery, pain on first post-operative day, amount of drug consumption, nausea, and vomiting. The ratio for patient controlled medication was 55.7% for women, and 70.5% for men, and for care-giver controlled medication, 35.1% for women, and 20.0% for men. Average pain scores for the first post-operative day were $3.9{\pm}2.2$ for patient controlled medication and $4.5{\pm}2.3$ for care-giver controlled medication. There were statistical differences according to mode used for PCA for amount of drug consumptions, nausea and vomiting but not for pain, operation day or pruritus. Conclusion: This study was carried out to examine risks according to who controls the PCA for post-operative patients. The results can help to develop education program for everyone who is involved in PCA, patients, caregivers, nurses and doctors.

  • PDF

A Study on the Plastic furniture Development since 1960′s - focused on the Kartell′s plastic chairs - (1960년대 이후의 플라스틱 가구 발전에 관한 연구 - 카르텔(Kartell)사의 플라스틱 의자를 중심으로 -)

  • 조경숙
    • Korean Institute of Interior Design Journal
    • /
    • no.28
    • /
    • pp.109-116
    • /
    • 2001
  • The plastic furniture made of new materials has enriched and broadened our everyday life not only through development of manufacture but also through consumptions since 1960′s. In relation as well to the need of reducing energy consumption and contributing to environment, the weight of plastic materials has raised concerns in recently. It should be pointed out that development of design technology, which would be risky to develop these synthetic materials was the strategic foundation of Kartell of which principal know-how with plastic techniques. Our rapidly changing lifestyle demands a new design that meet recognition of inflection. In conclusion as we are preparing to enter into the 21st Century, we should go forward with hope and do so with dispatch-dazzling all of us with boldness, thinking imaginatively, transform indifference into action, moving things to the next level in furniture industries, asking the "historic background of designing in plastic seat furniture" questions, challenging the very examples of the past in Kartell, Italy. From this study we have found that it would be useful to understand that the development of technological plastic materials for seat furniture has enabled designers to create ore and more sophisticated design in our millennium life.

  • PDF

Energy Efficiency Classification of Agricultural Tractors in Korea

  • Shin, Chang-Seop;Kim, Kyeong-Uk;Kim, Kwan-Woo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.215-224
    • /
    • 2012
  • Purpose: This study was conducted to classify the energy efficiency of 131 tractor models tested during from 2006 to 2010 in Korea. Methods: Four sub-indexes were developed using the fuel consumptions at 60% and 90% of rated speed with partial loads and at pull speeds of 3.0 km/h and 7.5 km/h with maximum drawbar pull. Weighting factors of the sub-indexes were also considered to reflect the characteristics of tractor's actual working hours in Korea. Four sub-indexes were integrated into a classification index. Using the developed classification index, a five-classification system was made on the basis of normal distribution of tractors over the classification range. Percentage of $1^{st}$ grade interval was expected to be close to 15%, $2^{nd}$ grade 20%, $3^{rd}$ grade 30%, $4^{th}$ grade 20%, $5^{th}$ grade 15%. Results: Number of $1^{st}$ grade was 21, $2^{nd}$ grade 23, $3^{rd}$ grade 39, $4^{th}$ grade 33, $5^{th}$ grade 15 among 131 models. Conclusions: Classification index was developed by integrating four sub-indexes. By the classification method using developed index, distribution of classified tractors was acceptable for practical application.

Energy Consumptions and Daylight Illumination levels of a Multi-beded Patient Room according to the Window Shapes and Shading (창의 형태 및 차양 계획에 따른 다인 병실의 에너지소비량과 주광조도의 평가 및 분석)

  • Choi, Changdae;Kwon, Soonjung;Kim, Sunsook
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.18 no.3
    • /
    • pp.29-39
    • /
    • 2012
  • Window and shading designs have a great influence on energy consumption and daylighting in buildings. As far as energy is concerned, small window area is advantageous. But it is not good to the patient healing in hospital. So it is important to find out the optimum window shape which is favorable for both energy consumption and patient healing. In this study, annual energy consumption and daylight illumination levels were analyzed according to the window shapes and shading devices for a multi-beded patient room in hospitals. The simulations were conducted for 19 different cases by COMFEN 4.0 computer simulation program. The results of this paper are as follows. First, window to wall area ratio and shading devices have great influences on annual energy consumption. But it is a problem in that they decrease significantly daylight level in bed room. Second, considering the same energy consumption, reducing the width of window rather than the hight of window is desirable for the secure of daylight level. Third, increase of the number of horizontal shade is not desirable in south face of the building for the energy consumption and daylight level. Fourth, sun shade is not necessary in north face of the building for the energy consumption and daylight level.

A Study on Anaerobic Sewage Treatment Using a Fluidized Bed Reactor (유동상 반응조를 이용한 하수의 혐기성 처리에 관한 연구)

  • Ye, Hyoung-Young;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • Anaerobic sewage treatment is drawing attentions due to high energy consumptions and sludge production associated with aerobic treatment. This study evaluates the treatment characteristics and energy balance of a fluidized bed reactor (FBR) for treating domestic sewage at $20^{\circ}C{\sim}25^{\circ}C$ for 245 days. Sewage fed to the FBR was a primary clarifier effluent of a domestic sewage treatment plant with COD of 99-301 mg/L and $BOD_{5}$ of 37-149 mg/L. Effluent $SBOD_{5}$ and its removal efficiency at HRT of 1~3 h were 6~15 mg/L and 73.4~85.5%, respectively, achieving high removal efficiency for soluble organic substances even at short HRTs. COD removal efficiency and its effluent concentration were 53.8~75.9% and 51~83 mg/L, respectively. The energy production potential from gaseous methane was 0.009-0.028 kWh/$m^{3}$, which satisfies the energy required for the FBR operation.

Evaluating Performance of Energy Conservation Measures for Remodeling Educational Facilities - Focused on Deteriorated Middle School Buildings - (교육시설 리모델링을 위한 에너지 절감 요소기술의 성능 평가 - 노후 중학교 건물 중심으로 -)

  • Lhee, Sang-Choon;Choi, Young-Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.105-110
    • /
    • 2012
  • Recently, all of the world are facing with a serious environmental crisis of global warming due to excessive energy consumptions. The Korean Government, taking over 97% of dependence on foreign energy, has made various efforts on reducing energy and greenhouse gas emission under the motto of "Low-Carbon Green Growth". Since the building sector takes 24% of domestic energy consumption, many design standards and regulations on saving energy in new buildings have been established. However, applications of energy saving designs and techniques on the remodeling process at deteriorated buildings including educational ones have been lack. Under a situation where the number of deteriorated schools accounts for up to 50%, this paper evaluated the performances of factors for reducing energy at deteriorated middle school buildings through an energy simulation tool on a standard school model. As a result, among factors of insulation, window's SHGC, southern louver, indoor setup temperature, and system efficiency, all other factors except window's SHGC and southern louver proved contribute to reduce energy at deteriorated middle school buildings, compared with the baseline energy consumption.

A Deep Learning-based Streetscapes Safety Score Prediction Model using Environmental Context from Big Data (빅데이터로부터 추출된 주변 환경 컨텍스트를 반영한 딥러닝 기반 거리 안전도 점수 예측 모델)

  • Lee, Gi-In;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1282-1290
    • /
    • 2017
  • Since the mitigation of fear of crime significantly enhances the consumptions in a city, studies focusing on urban safety analysis have received much attention as means of revitalizing the local economy. In addition, with the development of computer vision and machine learning technologies, efficient and automated analysis methods have been developed. Previous studies have used global features to predict the safety of cities, yet this method has limited ability in accurately predicting abstract information such as safety assessments. Therefore we used a Convolutional Context Neural Network (CCNN) that considered "context" as a decision criterion to accurately predict safety of cities. CCNN model is constructed by combining a stacked auto encoder with a fully connected network to find the context and use it in the CNN model to predict the score. We analyzed the RMSE and correlation of SVR, Alexnet, and Sharing models to compare with the performance of CCNN model. Our results indicate that our model has much better RMSE and Pearson/Spearman correlation coefficient.

Energy Simulation for Conventional and Thermal-Load Controls in District Heating (지역난방의 일반제어 및 열량제어 에너지 시뮬레이션)

  • Lee, Sung-Wook;Hong, Hiki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • Korea district heating systems have mainly used setting temperature control and outdoor reset control. Different from such conventional normal methods, a thermal-load control proposed in Sweden can decrease the return temperature and reduce pump power consumptions because the control is able to provide the appropriate amount of required heat. In this study, further improved predictive optimal control in addition to the conventional controls were simulated in order to verify its effect in district heating system using TRNSYS 17. $200m^2$ apartment housing which accounts for 25% in Korea and is used as a calculation model;. the number of households in the simulation was 9. As a result, a higher temperature difference and decreasing flow rate at primary loop were shown when using thermal-load control.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.