• Title/Summary/Keyword: construction time and costs

Search Result 383, Processing Time 0.029 seconds

Implementing an ERP Customizing Using Process Models and Business Components (프로세스 모델과 비즈니스 컴포넌트를 이용한 ERP 커스터마이징 구현)

  • 박지현;윤기송
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.129-140
    • /
    • 2002
  • To succeed in ERP construction, the purpose of ERP setup must be completed. To accomplish this end, it is required to analysis business process completely and make a plan in detail. For ERP providers', they must support a characterized ERP construction methodology and lower the construction cost by improving an ERP package by making it easy to customize. But, because imported EHP products that are supplied currently are designed for the standard and the rationality, they have a limit to support custom processes of domestic companies. On the contrary, ERP products by domestic companies are unable to support a consistent methodology of constructing ERP system. This is a main reason why much time and costs are consumed than that of an original plan. For solving the problems, ERP packages should provide a consistent process modeling methodology and a modeling tool which can support this methodology. Furthermore, customizing cost must be lowered by implementing reusable components from the process models. This Paper describes a component-based ERP Package system which has peculiar modeling tools and development tools. We describe the modeling methodology and the business component definition of the ERP system. Finally, we describe its customizing process based on these process designs and business components.

  • PDF

New hybrid stochastic-deterministic rock block analysis method in tunnels (터널의 신 하이브리드 추계학적-확정론적 암반블럭 해석기법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.265-274
    • /
    • 2010
  • In many tunnels, falling or sliding of rock blocks often occur, which cannot be predicted because of the complexity of rock discontinuities and it has brought an exponential increase in costs and time to manage. It is difficult to estimate the properties of rock masses before the tunnel excavation. The observational design and construction method in tunnels has been becoming important recently. In this study, a new hybrid stochastic-deterministic rock block analysis method for the prediction of the unstable rock blocks before the tunnel excavation is proposed, and then applied to the tunnel construction based on actual rock discontinuity information observed in the field. The comparisons and investigations with the analytical results in the tunnel construction have confirmed the validity and applicability of this new hybrid stochastic-deterministic rock block analysis method in tunnels.

Economic Analysis of Power Plant Utilities Under $CO_2$ Emission Tax (탄소세(炭素稅)를 고려한 화력발전 설비간의 경제성 평가)

  • Kim, Ji-Soo;Lee, Byoung-Nam;Kim, Tae-Jin
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.237-248
    • /
    • 1997
  • The purpose of this study is to make an economic analysis of power plant utilities by examining electricity generating costs with environmental consideration. Economic growth has caused pollutant emission, and subsequent environmental pollution has been identified as a very real limit to sustainable development. Considering the enormous role of electricity in the national economy, it is thus very important to study the effect of environmental regulations on the electricity sector. Because power utilities need large investments during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the very important process in the electric system expansion planning. In this study, the levelized generation cost method is used in comparing economic analysis of power plant utilities. Among the pollutants discharged of the electricity sector, this study principally deals with the control activities related only to $CO_2$, and $NO_2$, since the control cost of $SO_2$, and TSP (Total Suspended Particulates) is already included in the construction cost of utilities. The cost of electricity generation in a coal-fired power plant is compared with one in an LNG combined cycle power plant. Moreover this study surveys the sensitivity of fuel price, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically justified in the circumstance of environmental regulations.

  • PDF

Development of Horizontal Locomotion Robot using Rail Mechanism for H-beam Structure (H-빔 구조물에서의 레일을 이용한 수평주행로봇 개발)

  • Kim, Jong Heon;Jeon, Minseok;Jeon, Kyungtae;Lee, Sang Hoon;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.421-426
    • /
    • 2013
  • Nowadays in building construction field, workers become aged and avoid dirty, difficult, and dangerous work. Above all, a person who is in charge of beam assembling work in high and narrow space just relies on safety belt. So these workers should be highly trained. This paper deals with a new locomotion robot that can take this in charge, which will be able to provide less labor costs, less time to build a building and safer environments for workers. The geometric features of steel structure in building construction were carefully analyzed and developed a locomotion mechanism optimized to it. The robot was designed to be rugged, strong, and fast rather than having excessive mobility. Feasibility of the developed robot was verified through experiments.

Investigation of the bending behavior of 3D glass fabric-reinforced composite panels as slabs in buildings

  • Sabet, S.A.;Nazari, Sh.;Akhbari, M.;Kolahchi, R.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.369-373
    • /
    • 2019
  • Construction industry is one of the largest markets for composite materials. Composite materials are mostly utilized as surface coatings or concrete reinforcements, and they can hardly be found as a load bearing member in buildings. The three-dimensional composite structures with considerable bending, compressive and shear strengths are capable to be used as construction load bearing members. However, these composites cannot compete with other materials due to higher manufacturing costs. If the cost issue is resolved or their excellent performance is taken into consideration to overcome disadvantages related to economic-competitive challenges, these 3D composites can significantly reduce the construction time and result in lighter and safer buildings. Sandwich composite panels reinforced with 3D woven glass fabrics are amongst composites with highest bending strength. The current study investigates the possibility of utilizing these composite materials to construct ceilings and their application as slabs. One-to-one scale experimental loading of these composite panels shows a remarkable bending strength. Simulation results using ABAQUS software, also indicate that theoretical predictions of bending behavior of these panels are in good agreement with the observed experimental results.

Development of CPLD technology mapping algorithm for Sequential Circuit under Time Constraint (시간제약 조건하에서 순차 회로를 위한 CPLD 기술 매핑 알고리즘 개발)

  • Youn, Chung-Mo;Kim, Hi-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.224-234
    • /
    • 2000
  • In this paper, we propose a new CPLD technology mapping algorithm for sequential circuit under time constraints. The algorithm detects feedbacks of sequential circuit, separate each feedback variables into immediate input variable, and represent combinational part into DAG. Also, among the nodes of the DAG, the nodes that the number of outdegree is more than or equal to 2 is not separated, but replicated from the DAG, and reconstructed to fanout-free-tree. To use this construction method is for reason that area is less consumed than the TEMPLA algorithm to implement circuits, and process time is improved rather than TMCPLD within given time constraint. Using time constraint and delay of device the number of partitionable multi-level is defined, the number of OR terms that the initial costs of each nodes is set to and total costs that the costs is set to after merging nodes is calculated, and the nodes that the number of OR terms of CLBs that construct CPLD is excessed is partitioned and is reconstructed as subgraphs. The nodes in the partitioned subgraphs is merged through collapsing, and the collapsed equations is performed by bin packing so that if fit to the number of OR terms in the CLBs of a given device. In the results of experiments to MCNC circuits for logic synthesis benchmark, we can shows that proposed technology mapping algorithm reduces the number of CLBs bu 15.58% rather than the TEMPLA, and reduces process time rather than the TMCPLD.

  • PDF

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

An Earthwork Districting Model for Large Construction Projects (단지공사의 토공구획 계획 모델)

  • Baek, Hyeon Gi;Kang, Sang Hyeok;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.715-723
    • /
    • 2015
  • Earthwork in a large construction project such as a land development generally costs 20-30% of the total cost. The earthmoving process, comprising of four repetitive tasks: loading, hauling, unloading, returning, is quite simple and it does not need delicate or advanced techniques. Therefore, earthmoving earthwork planning can heavily affect the cost and time., and Even a slight deviation from the plan can increase or decrease the cost and time. This study presents a planning model that minimizes average haul distance in a large complex construction project. Based on earthwork planning, practitioners' heuristics, a districting algorithm and Simulated Annealing algorithm were employed to build the model. Districting algorithm plays a role that divides in dividing an earthmoving area into several sections. Simulated annealing provides a function that decides whether a new generated solution is confident. Finally, the proposed model was applied to a real earthmoving project of a large land development. It was found that the model showed approximately 14% improvement in average hauling distance compared to the actual design plan.

The Calculation Method for Prolongation cost of Sub-Constract in Domestic Public Construction Project (국내 공공 공사 하도급계약 공기연장 추가간접비 산정방안)

  • Jeong, Kichang;Lee, Jaeseob
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Research on additional indirect cost due to construction period extension in general contracts has continuously been active whereas the same for the subcontract operations has not been. In this research, we review previous research on evaluation methods for additional indirect costs which are widely being used on construction sites as well as previously proposed methods altogether, applying them to analyze model-cases for comparison. We acknowledge that this pattern for construction cost fluctuation over the construction period demonstrates an S-curve. This S-curve shaped indirect cost occurrence is then used to generate model-cases that are used throughout the research which models we applied previous evaluation methods on. Finally in pursuit of finding out some problems of evaluation methods, we came to derive a conclusion that the "Average Actual Cost Evaluation Method on Extended Duration," which, in turn, were proved to be valid for application on general contracts, was also valid for general application on subcontractor operations.