• Title/Summary/Keyword: construction practice

Search Result 1,083, Processing Time 0.043 seconds

Recipe-based estimation system for 5D(3D + Cost + Schedule) CAD system (레서피(Recipe) 기반의 견적 방법을 이용한 5D CAD 시스템)

  • Choi, Cheol-Ho;Park, Young-Jin;Han, Sung-Hun;Chin, Sang-Yoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.154-160
    • /
    • 2006
  • There wasn't very successful practice cases for the quantity take-off based on the CAD system since the CAD system is used in the construction industry more than 20 years in Korea. It was also not easy to use 3D CAD system in design management and cost management in the construction industry although 3D CAD system is very successful in the manufacturing industry for those areas recently. It is important to construct 3D libraries and to supply those libraries for the designers in time. Architectural work is a kind of creative work. So, Architects like to create their own model. Unlike the manufacturing industry, 3D CAD system can not be survived in the construction industry without new 3D objects supply in the right time. Moreover, the estimation system for 3D must support the schematic design phase, detailed design phase and construction design phase. The product called "Constructor" of Graphisoft consist of modeller, estimator and scheduler based on 3D model. We applied the system to a real project and compared the estimation result and we made a very successful case study.

  • PDF

Construction Methodology for Chum-Sung-Dae Validation through the Present Configuration (첨성대 건립에 대한 시공방법론 첨성대의 얼개를 통한 논증)

  • Kim, Jang Hoon;Park, Sang Hun
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.40-61
    • /
    • 2009
  • A new construction methodology has been proposed on a scientific basis to reason a rational explanation for the structure and the present configuration of Chum-Sung-Dae. This is because there is no way to otherwise explain the gap between our expectation that the people in Shilla are assumed to be and the problems, such as the use of a temporary supporting structure including falsework, the use of a conveying device for stonework and the practice of soil fill, raised when the construction method in nowadays is applied to the structure. Furthermore, it is because the questions, such as the difference of an azimuth angle between the southward opening and the square podium, the skewed circular plan in layers of the body, misalignment between neighboring layers of the body, disagreement between the inclination due to slight sidesway and the eccentricity in each layer of the circular body, perfectly aligned vertical and horizontal joints and the existence of soil fill, raised from the present configuration of Chum-Sung-Dae, also require a reasonable explanation based on scientific evidences, if any. Therefore, the proposed new construction methodology, in which the soil hill outside as well as the soil fill inside the Chum-Sung-Dae may have been utilized as a temporary scaffolding system for construction, is the highly probable one that the builders of Chum-Sung-Dae might have inevitably employed. The existence of great tombs, scattered in Hwang-Nam-Dong close to Chum-Sung-Dae, implies that the people of Shilla might have accepted the proposed new construction methodology as a natural one.

Groundwater control measures for deep urban tunnels (도심지 대심도 터널의 지하수 변동 영향 제어 방안)

  • Jeong, Jae-Ho;Kim, Kang-Hyun;Song, Myung-Kyu;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.403-421
    • /
    • 2021
  • Most of the urban tunnels in Korea, which are represented by the 1st to 3rd subways, use the drainage tunnel by NATM. Recently, when a construction project that actively utilizes large-scale urban space is promoted, negative effects that do not conform to the existing empirical rules of urban tunnels may occur. In particular, there is a high possibility that groundwater fluctuations and hydrodynamic behavior will occur owing to the practice of tunnel technology in Korea, which has mainly applied the drainage tunnel. In order to solve the problem of the drainage tunnel, attempts are being made to control groundwater fluctuations. For this, the establishment of tunnel groundwater management standard concept and the analysis of the tunnel hydraulic behavior were performed. To prevent the problem of groundwater fluctuations caused by the construction of large-scale tunnels in urban areas, it was suggested that the conceptual transformation of the empirical technical practice, which is applied only in the underground safety impact assessment stage, to the direction of controlling the inflow in the tunnel, is required. And the relationship between the groundwater level and the inflow of the tunnel required for setting the allowable inflow when planning the tunnel was derived. The introduction of a tunnel groundwater management concept is expected to help solve problems such as groundwater fluctuations, ground settlement, depletion of groundwater resources, and decline of maintenance performance in various urban deep tunnel construction projects to be promoted in the future.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Overview and Analysis of New International Code of Practice for Pile Foundation

  • Yoon, Gil-Lim
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • Limit state design(LSD) principles employing load and resistance factor design(LRFD) are coming into use in geotechnical engineering community around the world. Current working (allowable) stress design principles are expected to be replaced by LRFH method in the near future. North America has recently adopted LRFD principles, and European community has also developed its own code called "Eurocode" based on partial safety factor design which is essentially the same as LRFD. Relevant review and analysis of new global design codes are prerequisites to adopting these codes in the Korean construction industry and in the Korean foundation design prac titre. This paper reviews geotechnical aspects of LRFD and Eurocode, and analyzes the geomaterial resistance factors in LRFD for the design of axially-loaded driven piles.

  • PDF

Integral Bridge Using H-pile (H-말뚝을 이용한 일체식교대 교량)

  • 정경자;김성환;유성근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.241-248
    • /
    • 1999
  • The existing bridge with deck joint has many problems during construction and maintenance. To overcome these difficulties, an integral bridge, which is defined as the practice of constructing bridges without deck joints, is proposed in this study. A test bridge with 3 spans of PC beam was selected to verify the function of the bridge and is under construction. Characteristics of integral bridge are followings: $\circled1$ Flexible H-piles under the abutment are installed to accommodate thermal movements of the superstructures of bridge. $\circled2$ PC beam of the superstructure and the abutment are integrated. $\circled3$ The existing approach and relief slabs are applied to minimize the stress transfer occurred from the bridge deck to the pavement. $\circled4$ A cyclic control joint is installed between approach and relief slabs to absorb the thermal movement. $\circled5$ It is used a dual direction bearing which is cheaper than single direction bearing and has a good workability as well. It is also installed a shear block on the top of pier coping to protect the lateral movement caused by temperature change and earthquake.

  • PDF

Practical Application of Life-Cycle Cost Effective Design and Rehabilitation of Bridges

  • Cho, HyoNam;Park, KyungHoon;Hwang, YoonGoog;Lee, KwangMin
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.72-80
    • /
    • 2004
  • Recently, the demand on the practical application of life-cycle cost effective design and rehabilitation of bridges is rapidly growing in civil engineering practice. However, in spite of impressive progress in the researches on the Life-Cycle Cost (LCC), the most researches have only focused on the theoretical point but did not fully incorporate the critical issues for the practical implementation. Thus, this paper is intended to suggest a systemic integrated approach to the practical application of various LCC methodologies for the design and rehabilitation of bridges, For that purpose, hierarchical definitions of LCC models are presented to categorize the approach of LCC assessment applicable for the practical implementation. And then, an integrated LCC system model is introduced with an emphasis on data uncertainty assessment and user-friendly knowledge-based database for its successful implementation. Finally, in order to demonstrate the LCC effectiveness for design and rehabilitation of real bridge structures, illustrative examples are discussed.

Construction and Application of Nursing Information System Using NANDA-NOC-NIC Linkage in Medical-Surgical Nursing Units (간호진단-간호결과-간호중재 연계를 이용한 내외과계 간호단위 간호정보시스템 구축 및 적용)

  • Ko, Eun;So, Hyang-Sook
    • Korean Journal of Adult Nursing
    • /
    • v.25 no.4
    • /
    • pp.365-376
    • /
    • 2013
  • Purpose: The purpose of this study was to construct, develop, and apply a nursing information system (NIS) using NANDA-NOC-NIC linkage in medical-surgical nursing units. Methods: This study consisted of three phases which were the construction of the database, development of the NIS, and application of the NIS. To construct the database, a questionnaire and nursing record review by an expert group were used. Collected data were analyzed by the SPSS/WIN 13.0 program. Results: In first phase, the database was made up of 50 nursing diagnoses, 127 nursing outcomes and 300 nursing interventions. In the second phase, NIS was developed according to its flow diagram and then tested. In the third phase, the developed NIS was applied to 130 inpatients. Nursing diagnoses frequently used were acute pain, delayed surgical recovery, and deficient knowledge (specify). Nursing outcomes for a nursing diagnosis of 'acute pain' were identified as pain control, pain level and comfort level. Nursing interventions for the nursing outcome 'pain control' were pain management, patient controlled analgesia assistance and medication management. Conclusion: The results of this study will facilitate the use of the newly proposed NIS in nursing practice and provide a guideline for evidence-based nursing.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.

Curriculum Developments of Geospatial Information Studies for the Cyber University (공간정보 분야의 원격대학 교육과정 개발)

  • Seo, Dong-Jo;Lee, Sung-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.912-922
    • /
    • 2009
  • By 'National GIS Plan', various strategies and programs have been carried out for the professional training in the fields of geospatial information. The e-learning can make it possible to develop and manage the adaptable curriculums, to maximize the effect of the practical exercises, and to establish the cooperative systems with the industries. In this study, curriculums of the geospatial fields were developed and suggested for the cyber universities. These curriculums were divided into three stages, fundamentals, applications, and advances, and into three tracks, system development and construction, mapping and geospatial data construction, and practice and application, based on the current demands in geospatial industries. Owing to be the modularized structure, proposed curriculums would be easily adapted and updated to the change of the new demands.