• Title/Summary/Keyword: construction of mutant

Search Result 59, Processing Time 0.022 seconds

In Vivo Analysis of fadB Homologous Enzymes Involved in Biosynthesis of Polyhydroxyalkanoates in Recombinant Escherichia coli (재조합 대장균에서 fadB 유사효소의 Polyhydroxyalkanoates 합성에 미치는 역할의 규명)

  • 최종일;박시재;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.331-334
    • /
    • 2004
  • In vivo characterization of FadB homologous enzymes including PaaG, YdbU and YgfG for medium-chain-length (MCL) polyhydroxyalkanoate (PHA) biosynthesis was carried out in fadB mutant Escherichia coli. Previously, it was reported that amplification of FadB homologous enzymes such as PaaG and YdbU in fadB mutant E. coli resulted in enhanced biosynthesis of MCL-PHA by greater than two fold compared with control strain. In this study, we constructed paaG fadB double mutant E. coli WB114 and ydbU fadB double mutant E. coli WB115 to investigate the roles of PaaG and YdbU in biosynthesis of MCL-PHA. Inactivation of paaG and ydbU genes in fadB mutant E. coli harboring Pseudomonas sp. 61-3 phaC2 gene reduced the MCL-PHA production to 0.16 and 0.16 PHA g/L, respectively from 2 g/L of sodium decanoate, which are much lower than 0.43 PHA g/L obtained with fadB mutant E. coli WB101 harboring the phaC2 gene. Also, we identified new FadB homologous enzyme YgfG, and examined its roles by overexpression of ygfG and construction of ygfG fadB double mutant E. coli WB113.

Construction and Characterization of a Burkholderia pseudomallei wzm Deletion Mutant

  • Yuen, Chee-Wah;Ong, Eugene Boon Beng;Mohamad, Suriani;Manaf, Uyub Abdul;Najimudin, Nazalan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1336-1342
    • /
    • 2012
  • In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.

Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng

  • Choi, Han Suk;Koo, Hyo Bin;Jeon, Sung Won;Han, Jung Yeon;Kim, Joung Sug;Jun, Kyong Mi;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.505-514
    • /
    • 2022
  • Background: The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods: Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result: Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion: We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR-Cas9 system.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Construction of asm2 Deletion Mutant of Actinosynnema pretiosum and Medium Optimization for Ansamitocin P-3 Production Using Statistical Approach

  • Bandi Srinivasulu;Kim Yoon-Jung;Chang Yong-Keun;Shang Guang-Dong;Yu Tin-Wein;Floss Heinz G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1338-1346
    • /
    • 2006
  • Ansamitocin P-3 is a potent antitumor agent produced by A. pretiosum. A deletion mutant of A. pretiosum was constructed by deleting the asm2 gene, a putative transcriptional repressor. The deletion mutant showed a 9-fold enhanced ansamitocin P-3 productivity. The response surface method with central composite design was employed to further optimize the culture medium composition for ansamitocin P-3 production by the deletion mutant. The concentrations of four medium ingredients, dextrin, maltose, cotton seed flour, and yeast extract, which have been reported as major components for ansamitocin production, were optimized through a series of flask culture experiments. The optimum concentrations of the selected factors were found to be dextrin 6.0%; maltose 3.0%; cotton seed flour 0.53%; and yeast extract 0.45%. The maximum titer of ansamitocin P-3 was 78.3 mg/l with the optimized composition, about 15-folds higher than the unoptimized titer of 5.0 mg/l obtained with YMG medium.

Construction of multiple mutant strains by mating procedures for the cloning of pmn and pmb genes encoding amino acid permeases in neurospora crassa

  • Han, Hyo-Young;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.142-145
    • /
    • 1995
  • The pumb gene encoding a basic amino acid transport protein in Neurospora crassa could be cloned by using a mutant strain defective in pmb gene as a host strain, using a negative selection on the media containing amino acid analogue canavanine. To select positive transformants of the genes for cloning, an auxotrophic marker (his-2) was added to a pmb mutant strain by mating ; a triple mutant (pmn : pmb : his-2) was constructued by crossing a strain defective in basic amino acid transport system (# 1683-bat um 535 "A") to a double mutant strain defective in neutral amino acid transport and histidine production (mitrol : his-2 "a"). Crossing was performed on synthetic crossing (SC) media containing histidine. The pmn : pmb and pmn :pmb : his-2 strains were selected among the progeny colonies from crosses on plates containing 5- .mu.g/ml para-fluoro-phenylalanine (PFPA), 200 .mu.g/ml canavanine, and 500 .mu.g/ml histidine. The selected colonies were cultured on minimal media with or without histidine for discarding pmn : pmb strain, because the pmn : pmb : his -2 strain grows only on histidine containing media. The pmn :pmb : his-2 strain selected can be used as a host strain for the cloning of the pmb and the pmn genes from a Neurospora genomic library by means of positive selections.

  • PDF

Construction of Schizosaccharomyces pombe spThp1 Null Mutants and its Characterization (분열효모 Schizosaccharomyces pombe에서 spThp1 유전자 결실돌연변이의 제조와 특성 조사)

  • Yoon Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.149-152
    • /
    • 2006
  • The sp%pl null mutant was constructed to study the function of fission yeast Schizosaccharomyces pombe spThp1, which is homologous to budding yeast Saccharomyces cerevisiae THP1. Tetrad analysis showed that the spThp1 is not essential for vegetative growth. The spThp1 null mutant also showed no massive poly(A)+ RNA export defect. However, spThp1 null is genetically associated with spMex67 null. These results suggest that spThp1 is involved in mRNA export out of the nucleus.

Studies on the Construction of Mutant Diversity Pool (MDP) lines, and their Genomic Characterization in Soybean

  • Dong-Gun Kim;Sang Hoon Kim;Chang-Hyu Bae;Soon-Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.9-9
    • /
    • 2021
  • Mutation breeding is useful for improving agronomic characteristics of various crops. In this study, we constructed soybean Mutant Diversity Pool (MDP) from 1,695 gamma-irradiated mutants through two selection phases over M1 to M12 generations; we selected 523 mutant lines exhibiting at least 30% superior agricultural characteristics, and, second, we eliminated redundant morphological phenotypes in the M12 generation. Finally, we constructed 208 MDP lines and investigated 11 agronomic traits. We then assessed the genetic diversity and inter-relationships of these MDP lines using target region amplification polymorphism (TRAP) markers. Among the different TRAP primer combinations, polymorphism levels and PIC values averaged 59.71% and 0.15, respectively. Dendrogram and population structure analyses divided the MDP lines into four major groups. According to an analysis of AMOVA, the percentage of inter-population variation among mutants was 11.320 (20.6%), whereas mutant inter-population variation ranged from 0.231 (0.4%) to 14.324 (26.1%). Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. In an analysis of the genome-wide association study (GWAS) using based on the genotyping-by-sequencing (GBS), we detected 66 SNPs located on 13 different chromosomes were found to be highly associated with four agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with those previously reported for other genetic resource populations, including natural accessions and recombinant inbred line. Our observations suggest that genomic changes in mutant individuals induced by gamma rays occurred at the same loci as those of natural soybean population. This study has demonstrated that the integration of GBS and GWAS can serve as a powerful complementary approach to gamma-ray mutation for the dissection of complex traits in soybean.

  • PDF