• Title/Summary/Keyword: construction lift

Search Result 159, Processing Time 0.027 seconds

Study on the Fly-back Topology of New Power Feed-back Method for Active Cell Balancing (엑티브 셀 밸런싱을 위한 새로운 전력 피드백 방식의 플라이백 토폴로지에 관한 연구)

  • Seong-Yong Kang;Myeong-Jin Song;Seong-Mi Park;Sung-Jun Park;Jae-Ha Ko
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1083-1095
    • /
    • 2023
  • Recently, the demand for low-voltage, high-capacity ESS is rapidly increasing due to the revitalization of the e-mobility industry, which is mainly powered by electricity. In addition, the demand for portable power banks is rapidly increasing due to the revitalization of leisure industries such as camping and fishing. The ESS with this structure consists of a small number of series cells and many parallel cells, resulting in a system with a large rated current. Therefore, the number of power devices for cell balancing configured in series is small, but a balancing device with a large current capacity is required. Construction of a constant temperature device in such a low-voltage, high-current ESS is difficult due to economic issues. The demand for an active balancing system that can solve the passive balancing heating problem is rapidly increasing. In this paper, propose a power feedback fly-back topology that can solve the balancing heating problem. The characteristic of the proposed topology is that a series-connected voltage sharing voltage is used as the input of the flyback converter, and the converter output is connected to one transformer. In this structure, the converter output for cell voltage balancing shares magnetic flux through one high-frequency transformer, so the cell voltage connected to the converter automatically converges to the same voltage.

Pneumatic circuit design and Performance test of Air balancer (에어밸런서 공압 회로의 설계 및 성능 실험)

  • Kim, D.S.;Bae, S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.20-24
    • /
    • 2006
  • Air balancer is a conveyance cargo-handling machine, used in assembly and process lines of car and machining industries. This can lift up an object, the weight of which is from 5 to 200 kg, and moves it to a position. As industrial technologies evolve, it is required to move an object and fit it into a specified position with greater accuracy, rather than performing simple tasks such as lifting objects up and down as conventional ones do. There is also a demand to handle an object with one hand, rather than with two hands,. Through designs of manifold unit for an air balancer function, pilot regulator unit to keep pressure constant, hand unit for an accurate load perception function, and air balancer circuit, this study enables everybody to work it with ease and convenience. Experiments and comparisons were conducted for the performance evaluation of the circuit.

  • PDF

Computation of Tipping over Stability Criterion using ZMP algorithm for Hydraulic Excavator having Crane Function

  • Lim, Tae-Hyeong;Kim, Yong-Seok;Cheon, Se-Young;Lee, Young-Ju;Choi, Jong-Hwan;Lee, Hong-Seon;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.286-290
    • /
    • 2004
  • This paper deals with tipping over of hydraulic excavator's crane work. If the excavator lifts too heavy weight, the excavator will be tipped up. This is account for 38% of whole excavator accidents. In this paper, tipping-over load which is maximum load of excavator can lift with displacement of excavator links, real load and tipping-over rate are computed with Zero Moment Point theory. ZMP is verified with simulation and experiment.

  • PDF

Simple LED driver with Constant Current Control

  • Park, Seong-Mi;Song, Sung Geun;Lee, Sang Hun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-427
    • /
    • 2014
  • In this paper, simple LED driver is proposed. The proposed driver has simple construction having series capacitor, bridge rectifier, and adjustable regulator IC. Constant current control is possible with the use of TL431Z. The proposed in this paper, current is greater than the rating of the load, the current controller device measures the increased current in the circuit, and turned-on so that the current will be shared. Thus current control device makes the circuit more reliable, longevity as well as increase the luminous efficacy of the LED light. The simulation and experimental results are presented to show the validity of the proposed circuits.

Airplanes at constant speeds on inclined circular trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.399-425
    • /
    • 2016
  • The dynamical requirements are obtained for airplanes to travel on inclined circular trajectories. Formulas are provided for determining the load factor, the bank angle, the lift coefficient and the thrust or power required for the motion. The dynamical properties of the airplane are taken into account, for both, airplanes with internal combustion engines and propellers, and airplanes with jet engines. A procedure is presented for the construction of tables from which the flyability of trajectories at a given angle of inclination can be read, together with the corresponding minimum and maximum radii allowed. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and a F-16 jet airplane.

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF

Mock-up test for the comparison of hydration heat the thermal stress in different types of cements (시멘트 종류별 수화열 및 온도응력 비교를 위한 모형타설 실험 연구)

  • 김상철;이두재;강석화;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.187-192
    • /
    • 1998
  • Recent construction method in mass concrete structures would depend on the control of hydration heats and thermal stresses by using the low heat cement, optimized block size and a lift height, or both. This experimental study aims at the possibility of thermal cracks according to the different types of cementations material and at the investigation of these effects. Four different types of cements are applied to the mock-up test and are evaluated in terms of temperature rises and thermal stresses with the use of thermocouples, strain gauges and effective stress gauges. As a result of this study, it was found that stresses measured from effective stress gauges agree well with ones form strain gauges, and the trend of stress occurrence can be well evaluated from theoretical analysis.

  • PDF

The feasible constant speed helical trajectories for propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.371-399
    • /
    • 2017
  • The motion of propeller driven airplanes, flying at constant speed on ascending or descending helical trajectories is analyzed. The dynamical abilities of the airplane are shown to result in restrictions on the ranges of the geometrical parameters of the helical path. The physical quantities taken into account are the variation of air density with altitude, the airplane mass change due to fuel consumption, its load factor, its lift coefficient, and the thrust its engine can produce. Formulas are provided for determining all the airplane dynamical parameters on the trajectory. A procedure is proposed for the construction of tables from which the flyability of trajectories at a given angle of inclination and radius can be read, with the corresponding minimum and maximum speeds allowed, the final altitude reached and the amount of fuel burned. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the C-130 Hercules.

A study on the Impact force of floating body which acts on near shore structures - On the horizontal force acts on the vertical circular piles - (해안 구조물에 작용하는 부유체의 충격력에 관한 연구(I) - 연직원주에 작용하는 수평력 -)

  • Yang, Yun-Mo;Kim, Byeong-Uk;Kim, Do-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.105-120
    • /
    • 1982
  • The circular cylindrical piles are extensively used in near shore structures. For the purpose of analysing stability of vertical pile, we must consider the horizontal force, the lift force, and the traverse force etc. In this paper author studied horizontal force acts on the vertical circular pile and investigated the relation between the floating body coefficients C$$ and U$$T/D.

  • PDF

Wind-induced aerostatic instability of cable-supported bridges by a two-stage geometric nonlinear analysis

  • Yang, Y.B.;Tsay, Jiunn-Yin
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.381-396
    • /
    • 2008
  • The aerostatic instability of cable-supported bridges is studied, with emphasis placed on modeling of the geometric nonlinear effects of various components of cable-supported bridges. Two-node catenary cable elements, which are more rational than truss elements, are adopted for simulating cables with large or small sags. Aerostatic loads are expressed in terms of the mean drag, lift and pitching moment coefficients. The geometric nonlinear analysis is performed with the dead loads and wind loads applied in two stages. The critical wind velocity for aerostatic instability is obtained as the condition when the pitching angle of the bridge deck becomes unbounded. Unlike those existing in the literature, each intermediate step of the incremental-iterative procedure is clearly given and interpreted. As such, the solutions obtained for the bridges are believed to be more rational than existing ones. Comparisons and discussions are given for the examples studied.