• Title/Summary/Keyword: construction disposal

Search Result 357, Processing Time 0.026 seconds

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

Effects of Civil Blasting on Noise, Vibration and Total Suspended Particles (토목 발파가 소음, 진동, 부유 분진에 미치는 영향)

  • Jeong, Jin Do;Jeong, Yeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.99-107
    • /
    • 2004
  • This research is to determine the level of environmental pollution at a blasting construction area which is the origin of noise, vibration, and suspended particle, and to compare the results with other domestic and international standard data. This experiment is also to find out the effects resulting from blasting construction and to propose a plan that can decrease environmental pollution. The blasting construction area is a factory site which is about one and half million square meter and sewage disposal plant is about ninety thousand square meter. Both were selected as the areas for the tests to be conducted in determination test. The test to determine the level of noise, vibration, and total suspended particle was conducted thirty times around the blasting construction area by comparing measurement results and numerical analysis. However, as the test was not conducted in the laboratory but in the actual blasting construction area, it was not possible to do the test with the same exact conditions each true. Therefore, the test was not ideal as conditions could change from test to test. For the most part, the level of noise was below the standard level of 70dB. Every vibration test was under the standard limitation. For example, a house, 200m away was tested for noise and vibration and the level was found to be under the 0.2 cm/sec which is the standard for specialty designed cultural sites., i.e very low level. Also a buried oil pipeline that was 30m away also marked under 2.0cm/sec which is the norm for an industrial area. However, if there were an oil pipeline under the house, the amount of charging gunpowder per hole should be decreased compared to the amount used in the test. The test result for suspended particles under the standard limitation which is 24hour average 300$\mu\textrm{g}$/㎥ at a distance from blasting wavelength, but at detonator, total suspended particle from the blast origin exceeded the standard limitation. If explosion occurs when it detonates in the hole, most of the energy would be absorbed in the crushing of rocks, but some remaining energy would make noises and vibration inevitable. So the important thing is how to minimize the environmental pollution from the blasting. There should be regulations in order that the standard limitation is not exceeded, and to decrease the environmental pollution from the blasting.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Initial Investment Cost Analysis of Facilities of B2S Track System (B2S궤도시스템의 초기 시설 투입비용 분석)

  • Kim, Hyo-San;Min, Jun-Ho;Ryu, Jae-Kwang;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.733-739
    • /
    • 2011
  • B2S(Ballasted track To Slab track) that is track system has been first developed in 2004 with foundation of rich experience and know-how of subway track upkeep and mending of facilities in 36 years to improve an existence pebble track at a concrete track. 'B2S' is admitted technology through patent registration in the domestic and Europe and it's made by a factory and put together at field, so it's able to construct precisely and to reduce a construction period. In addition, safety, the ecological balance and durability are excellent, and walking, cleaning, etc. has the advantage of easy maintenance. 'B2S' is currently laying 27.7km at Seoulmetro as of end of 2010 standard, but it'll be expected to be applied to a domestic Metro more from now on. It is possible to classify the total cost resolution structure of B2S system by R&D cost, test production and experiment cost, the initial facility cost, maintenance cost, disposal cost. In this research, it seems useful for selection evaluation which considered the life cycle cost or economics of the concrete track structure by analyzing an initial cost of facilities.

  • PDF

Behaviors of Nuclear Spent Fuel Dry Storage System for Flask Dropping and Truck Collision (플라스크 낙하 및 이송차량 충돌에 대한 사용후 핵연료 건식저장시스템의 거동)

  • Song, Hyung-Soo;Min, Chang-Shik;Yoon, Dong-Yong;Chung, Hong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Delaying and objection for the construction of storage spent-fuel disposal has prompted to consider expanding on-site storage of spent reactor fuel since it can eliminate the need for costly and difficult shipping and control of the spent fuel completely under the direction of the owner-utility. The dry storage unit developed in Canada can accommodate Korea heavy water reactor fuel elements and become a candidate for the Korean market. In this paper, finite element analysis were carried out in order to investigate the structural behavior of the nuclear spent fuel dry storage system, which is subjected to impact loads such as collision of a truck load and dropping of flask under the irregular operation.

Composition and Use of Biosafety Level 3 Facility (생물안전 3등급 연구시설의 구성 및 이용)

  • Kim, Changhwan;Hur, Gyeunghaeng;Lee, Wangeol;Jung, Seongtae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Laboratory facilities for biology are designed as biosafety level 1, biosafety level 2, biosafety level 3, and biosafety level 4. Biosafety level designations are based on a composite of the design features, construction, containment facilities, equipment, practice and operation procedures required for working with agents from the various risk groups. Generally, biosafety level 3 means the facility that is appropriate for the experiments using pathogens which can cause serious diseases by aerosol transmission. The biosafety level assigned for the specific work to be done is driven by professional judgement based on a risk assessment, rather than by automatic assignment according to the particular risk group designation of the pathogenic agents to be used. In this paper, we introduced the biosafety level 3 facility operated in ADD(Agency for defense development). It contains the overview of facility, microbiological experiment, animal experiment, decontamination and waste disposal. Biosafety level 3 laboratory in ADD has served the vital role in the research of biological agents and antidote development.

Treatment of residues of excavated carcasses burials (가축매몰지 소멸시 잔존물 처리방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2018
  • Burials for the rapid disposal of carcasses have diverse and profound effects on the rural living condition, natural environment, and local economy throughout construction, management and final destruction of burials. In this study, possible residue excavated from standard burials, storage using FRP (Fiberglass Reinforced Plastic) tanks, and microbial-treated burials are characterized as carcasses, contaminated soil by leachate, and wasted plastic film. Treatment technologies for volume reduction of the residue including composting, rendering, and thermal hydrolysis were investigated. If the solid and liquid residues generated during volume reduction treatment are directly transferred to the environmental facilities, it may cause disorder due to high concentrations of organics, antibiotics, and lipid. Benefits and drawbacks of composting as a volume reduction techniques are extensively investigated. We also discussed that proper treatment of excavated soils and the reusing the treated soil as agricultural purpose. For the protection of public health and worker's hygiene, treatment criteria including produced residue qualities, and quality standards for the treated soil as agricultural use are required. In addition, Scientific manual for the proper treatment of residues is required. It is necessary to consider the establishment of a pretreatment facility to the occurrence of large-scale residue treatment.

The Outline of Han River Basin Environmental master Plan Project (한강유역 환경보전 종합계획 사업의 개요)

  • 이선환
    • Journal of the Korean Professional Engineers Association
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 1982
  • Following rapid industrial development and urbanization in Korea, there is a need for the Government to implement effective control of pollution and to undertake specific schemes in areas where pollution of the environment is severe. In response to this need, Government of Korea prepare Han River Basin Environmental Master Plan Project for water, air, solid waste to cover environmental protection of the Han River Basin. The Project area is approximately 27,000 sq. Km extending over Seoul, Kyunggi, Kwangwon, Chungbuk Province. The total population of Master Plan Project area is approximately 11.6 million, or one-third of the total population of Korea. There are about 8,000 industries, including those located in 16 industrial complexes, in the project area. The scope of work and terms of reference are the following: (1) A Summary of existing land use and forecasts for changes in land use by the year 2,000. (2) Emission inventories for air, waste water, and solid wastes. (3) Forecasts of future population growth patterns and pollution loadings. (4) Identification of specific projects needs to reduce pollution levels and satisfy the environmental quality standards. (5) A Program of enforcement to include (i) self monitoring, and (ii) governmental inspections and surveillance. (6) A program for quality improvement and quality assurance of environmental measurements. (7) Reports summarizing all data collected analyzed during the study. (8) Conceptual design and feasibility studies, including cost estimates, for needed pollution control projects. (9) A financial plan for future detailed design and construction of public facilities, for financial incentives to industry, and for user charges for industrial use of public treatment of disposal works.

  • PDF

The Near-field Behavior of Effluent discharged from Confined Disposal Facility (제한투기시설에서 배출되는 여수의 근역거동)

  • 정대득;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.95-107
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity, so that the dredging project which is composed of excavating, removing, transporting, storing and disposing dredged material must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe manner. The most important point in dumping operations is an estimating and reducing the impacts of discharges at the dumping area. One of the most effective method for the reduction of ecological impacts at dumping area is using the schematic process composed of the sophisticated plan, precise work and predicting/reducing the impacts based on the numerical model and field observation. In this study, the numerical model is used to predict the near-field spatial fate and begavior of effluent discharged from Confined Dumping Facility(CDF) located near coastal area. To to this purpose, reappearing of tidal current was preceded. The model is then applied to Mokpo harbor, where capital dredging and maintenance dredging are conducted simultaneously and the CDF is under construction;. In the series of model case study, we found that the near-field behavior of effluent discharged from CDF was governed by the receiving water condition, outfall geometry, characteristics of efflent and CDF operating conditions.

  • PDF