• Title/Summary/Keyword: construction disposal

Search Result 361, Processing Time 0.027 seconds

Phosphate Removal from Aqueous Solution according to Activation Methods of Red Mud (알루미늄 제련 폐기물(Red Mud)의 활성화 방법에 따른 수용상의 인산염 제거특성)

  • Kim, I-Tae;Bae, Woo-keun;Kim, Woo-jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.466-472
    • /
    • 2004
  • Red mud is formed as a waste during bauxite refining known as Bayer's process. Its main constituents are iron, aluminium, sodium and silica. The disposal of large quantities of wasted red mud causes a serious ecological problem. In this study, the red mud wasted from the bauxite refinery was studied for phosphate removal from aqueous solution according to activation methods. The influence of heat treatment, and neutralization with sea water and acid treatment level for the optimum conditions for phosphate removal have been determined. Heat treatment combined with acid treatment is most suitable for the removal of phosphate from aqueous solution. The optimal condition was activated with 1 N HCl solution after heating in $600^{\circ}C$ during 4 hours. Acid and heat treatment causes sodalite compounds which hinder the phosphate adsorption to leach out. The adsorption data obtained followed a first-order rate expression and fitted well with the Freundlich Isotherm well.

Analysis of Process and Operating Characteristics for Chung Nam Province Sewage Treatment Plants (충청남도 하수처리시설의 공정 및 운영 특성 분석)

  • Oa, Seong Wook;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.553-559
    • /
    • 2009
  • Currently, small scale sewage works are getting increase in Chung Nam Province and it is strongly required for those plants to get the information of optimized procedures and technologies. Most processes for sewage works in Korea were designed for large scale plants, so many difficulties are observed in small scale sewage works. This study was conducted to evaluate the propriety of O&M and construction cost for sewage treatment plants in Chung Nam Province. The treatment results and process stability of 32 public sewage treatment plants were also investigated. It is expected to provide optimum O&M and construction cost for future small scale sewage works and improving projects of existing plants by these results. Pollution problems caused by small scale plants are usually restricted to small areas; however, in view of the high cost per unit population, treatment requirements and alternatives have to be studied carefully. In comparison to larger plants, more pronounced and different boundary conditions such as unstable influent load, per capita costs and a large variety of feasible treatment and disposal systems were considered.

A Study on Development Works of Mokpo Port for Pax Pacific Asiana (환태평양시대의 목포항만 개발방향)

  • 홍동문
    • Journal of Korea Port Economic Association
    • /
    • v.17 no.1
    • /
    • pp.129-157
    • /
    • 2001
  • In Korea, the quantity of waste is excessive as a result of increases in population and consumption following industrialization. This has resulted in urban environmental problems, a shortage of landfills and pollution around landfills. Thus, there is a need to conduct research in order to find an effective long-term alternative. In Japan, there are more landfills at sea than there are on land. Based on projections for Korea, on-land landfills in the metropolitan area will be filled to capacity by 2020 and then be closed. This research recommends the construction of landfill sites at sea as an alternative waste disposal method. Its findings show that the most the suitable sites for landfills within the Seoul metropolitan area are the regions around Jangbongdo Island and Mueido Island. It also suggests that the best way to transport waste is through the Kyungin Canal from the middle collection center to the lower Han River. The estimated cost of constructing an at-sea landfill to be used for 50 years is approximately two trillion won, with a total construction time of 10 years. In the future, further research related to this study will be conducted in order to ensure that environmentally-friendly landfills are built.

  • PDF

Applicability of Stone Powder Sludge as a Substitute Material for Quartz Sand in Autoclaved Aerated Concrete

  • Kim, Jin-Man;Choi, Se-Jin;Jeong, Ji-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.111-117
    • /
    • 2017
  • Stone powder sludge is a byproduct of the crushed aggregate industry, and most of it is dumped with soil in landfills. The disposal of stone powder sludge presents a major environmental problem. This paper investigates the effects of stone powder sludge on the fluidity, density, strength and micro-structure properties of AAC(autoclaved aerated concrete) samples. Stone powder sludge was obtained from a crushed aggregate factory in order to investigate its applicability as a substitute for quartz sand in AAC. To determine the properties of the AAC samples produced with stone powder sludge, specimens containing different foam ratios were produced. Flow value, density, compressive strength, tensile strength and flexural strength of the samples were tested, and X-ray diffraction (XRD) was performed. The test results indicated that the compressive strength of AAC specimens (F120) with stone powder sludge was higher than that of AAC specimens (Q120) with quartz sand for same foam ratio of 120%. For all XRD diagrams, a higher number of tobermorite peaks was shown for the F120 sample than for the Q120 sample, which may explain the slightly higher strength gain in the F120 sample.

Application of waste tire rubber aggregate in porous concrete

  • Shariati, Mahdi;Heyrati, Arian;Zandi, Yousef;Laka, Hossein;Toghroli, Ali;Kianmehr, Peiman;Safa, Maryam;Salih, Musab N.A.;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.553-566
    • /
    • 2019
  • This study aimed to categorize pervious rubberized concrete into fresh and hardened concrete analyzing its durability, permeability and strength. During the globalization of modern life, growing population and industry rate have signified a sustainable approach to all aspects of modern life. In recent years, pervious concrete (porous concrete) has significantly substituted for pavements due to its mechanical and environmental properties. On the other hand, scrap rubber tire has been also contributed with several disposal challenges. Considering the huge amount of annually tire wastes tossing out, the conditions become worse. Pervious concrete (PC) gap has graded surface assisted with storm water management, recharging groundwater sources and alleviate water run-offs. The results have shown that the use of waste tires as aggregate built into pervious concrete has tremendously reduced the scrap tire wastes enhancing environmental compliance.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Analysis of Tensile Strength Changes by Outdoor Exposure of Scaffolding PP Fiber Rope (달비계용 PP섬유로프의 야외노출에 따른 인장강도 변화 분석)

  • Sung-Yun Kang;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2023
  • The use of hanging scaffolding for exterior wall painting and cleaning in building construction and maintenance carries the inherent risk of fall accidents. While periodic rope replacement is crucial for preventing accidents resulting from rope breakage, current regulations lack specificity in determining appropriate disposal period for fiber ropes. This study analyzed the tensile strength of the most commonly used PP fiber ropes with different diameters (16 mm, 20 mm) in the domestic construction industry. Additionally, the effect of outdoor exposure was examined by measuring the tensile strength of new ropes and ropes exposing to outdoor conditions for 30 days and 90 days. The results showed that the new ropes and those exposed to outdoor for 30 days met the KS (Korean Standards) criteria for tensile strength. However, a significant decrease in tensile strength was observed in ropes exposed to outdoor for 90 days compared to both the new ropes and those exposed for 30 days. Furthermore, the ropes exposed for 90 days did not meet the KS criteria. These findings indicate the degradation of PP fiber ropes due to UV (Ultra Violet) radiation, highlighting the importance of considering this factor when determining the replacement period for fiber ropes used in scaffolding work.

Strength and permeability of fiber-reinforced concrete incorporating waste materials

  • Xu, Yun;Xu, Yin;Almuaythir, Sultan;Marzouki, Riadh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.133-152
    • /
    • 2022
  • Ecological issues such as natural resource reduction and enormous waste disposals are increasingly leading in developing civilization toward sustainable construction. The two primary environmental issues are the depletion of natural resources and the disposal of trash in open landfills. Waste steel fiber (WSF) was investigated for usage as a cement-based concrete (CBC) constituent in this research. Recycling waste fibers both makes cement composites more long and cost-effective, also aids in pollution reduction. The objective of this study is to analyze the impacts of waste fiber on the fresh and mechanical features of concrete using recycled additives. A comparative research on the durability and mechanical qualities of fiber-reinforced concrete (FRC) constructed with natural aggregates was conducted for this aim. The obstacles to successful WSF recycling methods application in the building industry have been investigated, resulting that CBCs with these fibers make an economic and long lasting choice to deal with waste materials. The workability of fiber enhanced concrete was found to be comparable to that of normal concrete. Fibers have a considerable impact on the splitting tensile strength, flexural and compressive strength of recycled concrete. Fiber may enhance the water permeability. When the WSF content is 0.6 kg/m3, the water absorption is nearly half. Fibers would have no effect on its permeability.

An Economic Analysis of Recycling for Waste Concrete;A Case study at Hosing Development District (폐콘크리트의 현장재활용 시 경제성 분석;택지개발사업지구를 중심으로)

  • Ko, Eun-Jung;Lee, Jae-Sung;Jung, Jong-Suk;Jun, Myoung-Hoon;Lee, Do-Heun;Bang, Jong-Dae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.198-203
    • /
    • 2006
  • Recently, the construction wastes increase rapidly due to the revitalization of reconstruction and redevelopment, the development of new urbanization of large housing development, the expansion of social infrastructure, and so on. To solve rapid increase of construction waste, the government established "the rule on the promotion of recycling of construction waste" in December, 2003. According to the rule, construction wastes can be recycled by either processing on commission or discharger of construction waste. However, most of construction waste can be recycled by processing on commission. One of the most reason is that it is difficult for proving economic effect of site recycling by discharger. This study investigated and analyzed in a generation and disposal process, status of recycling, and procedure and process of site recycling of construction waste. Also, this study proved the validation of site recycling for construction waste as economic efficiency is analyzed through the case study of site recycling at large housing development district. The results of this study can utilize the establishment of policy and basic data of feasibility for site recycling of construction waste.

  • PDF