• Title/Summary/Keyword: construction control

Search Result 5,209, Processing Time 0.034 seconds

Development of Sensorless Hydraulic Servo System for Underwater Harbor Construction (수중항만공사용 로봇의 센서리스 유압 서보 시스템 개발)

  • Kim, T.S.;Kim, C.H.;Park, K.W.;Lee, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.708-713
    • /
    • 2004
  • This research develops a sensorless hydraulic servo system of Parallel-Typed robot for harbour construction. Purpose of the robot is to mechanize the construction, which is accomplished through a joystick's operating by a stoneworker (or diver). The robot is attached on the end of an excavator as its attachment or transported by a crane to reach the desired place. The embedded compact controller is installed on the robot body and controlled by wireless telecommunication. For underwater work, it is necessary to waterproof the robot and its sensors. Especially, a sensor waterproof is a main drawback for the underwater robot. This leads us to develop a hydraulic robot position controller using an observer which gives the position information without any position sensor. We design a neural network to identify the displacement change according to the command voltage to servo valve. To verify the sensorless controller, this paper presents the performance of the sensorless control for which the position is given by the observer comparing with that of the sensor control for which the position is measured by LVDT sensors.

  • PDF

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF

A Review on the Effects of Earthborne Vibrations and the Mitigation Measures

  • Nam, Boo Hyun;Kim, Jinyoung;An, Jinwoo;Kim, Bumjoo
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2013
  • Earthborne vibrations are induced by construction operation such as pile driving, roadbed compaction, and blasting and also by transit activities such as truck and trains. The earthborne vibration creates the stress waves traveling outward from the source and can structurally damage nearby buildings and structures in the forms of direct damage to structure and damage due to dynamic settlement. The wave propagation characteristics depends on impact or vibration energy, distance from the source, and soil characteristics. The aim of this paper is to provide a comprehensive review on the mechanistic of earthborne vibration and the current practice of vibration control and mitigation measures. The paper describes the state of knowledge in the areas of: (1) mechanics of earthborne vibration, (2) damage mechanism by earthborne vibration, (3) calculation, prediction of ground vibration, (4) the criteria of vibration limits, (5) vibration mitigation measures and their performance, and (6) the current practice of vibration control and mitigation measures.

Compressive Strength Control of High Strength Concrete Using Transparent Joint Separation Test Body (투명접합분리 시험체를 활용한 고강도 콘크리트의 강도관리에 관한연구)

  • Ki, Jun-Do;Jung, Kwang-Sik;Kim, Hak-Young;Kim, Kwang-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.49-52
    • /
    • 2009
  • This paper aims to evaluate hydration and intensity property of different kind of members and intensity in order to evaluate compressive strength of structural concrete using Joint Separation Test Body(JSTB). In fact it is difficult to test and evaluate already have constructed member. In this case, common method used by construction engineer is that ; Schmidt rebound hammer test, Ultrasonic pulse test, Method of using test specimen previously cast. However, these method to control the structural intensity involve many problem and impossibility to adapt construction. 80, this paper proposes advance an opinion which have proper to examine intensity. has also aims to examine its validity and the plan to make similar environment with structural concrete and joint separation test body in order to verify efficiency assessment and on-site application.

  • PDF

Apartment house project cost schedule for integrated management BIM-based BoQ application plan (공동주택 프로젝트 비용일정통합 관리를 위한 BIM 기반 BoQ 구축 및 활용 방안)

  • Zheng, Lianyi;Kim, Woong-Gi;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 2021
  • Since entering the 21st century, the construction industry has developed faster and faster, and more and more technologies have been applied in the construction industry. BIM technology (Building Information Modeling) was born in this environment. The application of BIM technology can greatly improve the efficiency of cost management and help achieve the goal of cost management. But through BIM to realize project cost management, there is still no good solution. In order to solve this problem, this paper puts forward the concept of WBS structure applied to construction projects by studying the BoQ (Bill of Quantities) list based on BIM, and proposes the numbering method of the structure. The WBS (Work Breakdown Structure) structure proposed in this paper divides more than 5000 cost objects into 133 projects according to the type of work and project schedule. This structure helps to realize the application of BIM in project cost management. Although this article has studied more than 5000 data of three projects, it does not think that it can cover all cost objects in the existing construction industry. The purpose of this article is to propose a solution for cost and Process Control using BIM-based BoQ data.

A Priority and Impact Factor Analysis of Construction Management Tasks for Decreasing Change Orders and Defect Repairs in Cancer Treatment Center Projects (암센터 의료시설의 설계변경과 하자보수의 감소를 위한 중점 관리공사 분석)

  • Lee, Chijoo;Lee, Ghang;Sim, Jaekyang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.55-64
    • /
    • 2013
  • The complexity of constructing medical institutions is higher than that of general buildings, and many change orders in the design and defect repairs in the construction phase are required due to strict government regulations. The priority control of constructions and impact factors of medical institutions were analyzed in this study, and difficulties in the control in the design and construction phase were identified. First, the priority management factors that were identified were as follows: architecture, facilities, and electricity. Second, 1) priority management in constructions and factors resulting in change orders and 2) priority management in constructions involving defect repair were analyzed. Third, the importance recognized by the construction managers were analyzed. The priority management in constructions and factors that were recognized by the construction manager were deducted as having low importance, although there were many change orders and defects. The work of finishing, wall building, joining, office automation and communication function, and lighting were analyzed in the design phase, and waste, the office automation and communication function, ceilings, contamination control, and plumbing were analyzed in the construction phase. The results showed that there will be a decrease in change orders and defects if the concentration of the manager was elevated and priorities were managed.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

Analysis on Construction Clients' Role for Safety and Health Management in Plan, Design, and Construction Stage (건설공사 발주자의 계획, 설계, 공사단계 안전보건관리 역할 분석)

  • Lim, Se Jong;Jeong, Seong-choon;Na, Ye Ji;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.24-31
    • /
    • 2020
  • The duty of construction clients in WSH (Workplace Safety and Health) system was included in the amendment of Occupational Safety and Health Act (enforced on 16 January 2020), which was estimated the shift of paradigm in the prevention of construction accidents. The purpose of this paper is to introduce the analysis results of construction clients' role in the construction project, which were performed by authors over the recent years in order to impose the duty on construction clients, and to suggest their role according the plan, design, and construction stage. Utilizing the systematic literature review process based on Meta analysis, the related papers were selected. For the selected papers, related domestic and foreign regulations, and other prominent report, the construction clients' role was analyzed by reflecting the experts' advice. Results show that the construction clients should control the designer and contractor for implementing the WHS system during the whole process of the construction project. They should supply sufficient source and time to ensure the workers' safety. In the plan stage, the key role of construction clients is to identify intensively controlled hazard and risk reduction plan and to transfer the results. In the design stage, their key role is to select the designer with the capacity in WSH and to assist the designer for the safety design. The main key role of construction clients in the costruction stage is to select the contractor with specialty in WSH including a contract reflecting the WSH requirement and to check implementation of WSH plan, WSH cost, WSH education, and accident report. In addition, it is thought that the construction clients' participations in the site WSH activity and adjustment of safety and health problem among contractors can be effect in the prevention of construction accidents.

Development of an Enhanced Risk Management System for Construction Defect Control in Industrial Plants

  • Kihun Song
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1313-1313
    • /
    • 2024
  • This paper proposes the development of an advanced Risk Management System (RMS) using Risk-Based Methodologies (RBM) specifically tailored for addressing construction defects in industrial plants. Urbanization and industrialization demand robust frameworks to handle the complexities and safety concerns in construction projects. Traditional risk management often overlooks critical aspects such as persistent construction defects. This paper discusses the development of an innovative Risk Management System (RMS) that integrates Risk-Based Methodologies (RBM) specifically for construction defect mitigation in industrial settings. The study centers around the implementation of Risk-Based Inspection (RBI) techniques, tailored to enhance traditional risk management systems. This includes developing a specialized risk assessment tool alongside an online management platform, designed to provide continuous monitoring and comprehensive management of construction risks. The proposed system-RBE-i (Risk-Based Execution for Installation)-focuses on identifying, evaluating, and mitigating risks effectively, utilizing a systematic approach that integrates seamlessly into existing construction workflows. The RBE-i system's core lies in its ability to conduct thorough risk analyses and real-time data provision. It uses digital technologies to improve communication, operational efficiency, and decision-making processes across construction projects. By applying these methodologies, the system enhances safety and ensures more efficient project execution by preemptively identifying potential risks and addressing them promptly. Field applications of RBE-i have demonstrated its effectiveness in significantly reducing construction defects, thus validating its potential as a transformative tool in construction risk management. The system sets new industry standards by shifting from reactive to proactive risk management practices, ultimately leading to safer, more reliable, and cost-effective construction operations. In conclusion, the RMS developed through this study not only addresses the pressing needs of construction risk management but also proposes a paradigm shift towards more proactive, structured, and technology-driven practices. The successful integration of the RBE-i system across various pilot projects illustrates its significant potential to improve overall project outcomes, making it an invaluable addition to the field of construction management.

A Suggestion of Mix, Construction Method and Quality Control Criteria of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트 포장의 배합, 시공 및 품질관리 기준 제안)

  • Lee, Seung-Woo;Kim, Young-Kyu;Choi, Don-Hwa;Shim, Jae-Won;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.51-63
    • /
    • 2011
  • Surface of fine-size exposed aggregate portland cement concrete pavements(FS-EAPCC) is consist by exposed coarse aggregate to remove upper 2~3mm mortar of concrete slabs. Advantages of FS-EAPCC are maintaining low-noise and adequate skid-resistance level during the performance period. However, FS-EAPCC is required rational management criteria for field application, since it is early stage for application. Design construction and quality control criteria of FS-EAPCC was temporary laboratory tests which including optimum mix and exposing method, selection of adequate aggregate, resistance against, environmental loading and etc. However, these criteria need to be validated base on field application. In this study, experimental constructions were performed and construction procedure and quality control criteria were suggested based on the performance of the FS-EAPCC.