• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.03 seconds

A Study on Equipment and Space Composition of Heavy Ion Therapy Center (중입자치료센터의 장비 및 공간 구성에 관한 연구)

  • Hong, chang pyo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.4
    • /
    • pp.7-14
    • /
    • 2020
  • Purpose: The purpose of this study is to provide basic information for the establishment of a Heavy Ion Therapy center by analyzing the cases of Heavy Ion Therapy devices, introducing the equipment and space composition of Heavy Ion Therapy equipments. Methods: This study is carried out by study the Heavy Ion Therapy, by figure out status of the installation of treatment centers around the world and by analyze the composition of Heavy Ion Therapy equipments and spaces through case studies. Results: The results of this study, which investigated the treatment of Heavy Ion Therapy and analyzed the plans of the five Heavy Ion Therapy centers, are summarized as follows. 1) Heavy Ion equipment requires a significant floor area. Vertical as well, many cross-sectional areas need to be secured for the construction of a delivery system. The Heavy Ion Therapy device should be built as a shielded wall because of the radiation leaking. Therefore, it is necessary to consist of a independent treatment center. 2) The size of Heavy Ion devices is getting smaller. Linac can be put into syncrotron. and the size of syncrotron, delivery system, and rotating-gantry is getting smaller. 3) Japan is often installed for treatment, and control rooms are integrated, while Europe has secured research space and each control room is separated. Implications: People are not familiar with the Heavy Ion Therapy. And the effectiveness of the treatment is not well promoted yet. Hopefully, more attention will be paid to the research involved in the Heavy Ion Therapy.

A study on the development of a virtual power plant platform for the Efficient operation of small distributed resources (소규모 분산자원의 효율적 운용을 위한 가상발전소 플랫폼 개발)

  • Kim, Hee-Chul;Hong, Ho-Pyo
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.365-371
    • /
    • 2021
  • In this study, The Virtual Power Plant (VPP) solution platform considered in this study minimizes the cost and investment risk associated with the construction of power generation and transmission facilities. In addition, it includes a Demand Response (DR) program operation function to meet consumers' electricity demand. With the introduction of VPP, it is possible to provide more eco-friendly and efficient power by responding to changes in consumer load in real time through existing generators and DR programs without large-scale facility investment in power generation and transmission/distribution sectors. In order to link the communication device to the solar power and ESS linkage device, it is necessary to transmit data in the control/state between the device device and the edge system and develop an IoT device and interworking platform (OneM2M).

Development of AI Image Analysis Emergency Door Opening and Closing System linked Wired/Wireless Counting (유무선 카운팅 연동형 AI 영상분석 비상문 개폐 시스템 개발)

  • Cheol-soo, Kang;Ji-yun, Hong;Bong-hyun, Kim
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In case of a dangerous situation, the roof, which serves as an emergency exit, must be open in case of fire according to the Fire Act. However, when the roof door is opened, it has become a place of various incidents and accidents such as illegal entry, crime, and suicide. As a result, it is a reality to close the roof door in terms of facility management to prevent crime, various incidents, and accidents. Accordingly, the government is pushing to legislate regulations on housing construction standards, etc. that mandate the installation of electronic automatic opening and closing devices on rooftop doors. Therefore, in this paper, an intelligent emergency door opening/closing device system is proposed. To this end, an intelligent emergency door opening and closing system was developed by linking wired and wireless access counting and AI image analysis. Finally, it is possible to build a wireless communication-based integrated management platform that provides remote control and history management in a centralized method of device status real-time monitoring and event alarm.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Experimental evaluation of the performance of self-compacting concrete contains nano clay and nano egg shell

  • Hilal, Nahla N.;Hadzima-Nyarko, Marijana
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.349-360
    • /
    • 2022
  • The rising prices of landfills and the lack of cement production are motivating researchers to be more interested in using wastes to produce concrete mixtures materials. The use of waste materials such as eggshell and matakoline waste not only reduces landfill costs and space, but also reduces the cost of cement production for the concrete mixture. However, recycling waste materials has become critical in order to effectively manage environmental sustainability. The purpose of this paper is to investigate the appropriate properties of self-compacting concrete (SCC) by incorporating waste materials such as crushed ceramics as coarse aggregate and nano egg shell (NES) and nanoclay (NC) as cement replacements. Fresh properties of SCC, such as segregation, flow time and diameter, V-funnel, H2/H1 ratio, and fresh unit weight of concrete mixtures, as well as hardened properties, such as 7, 14, and 28 days compressive strength and 28 and 90 days flexural strength, were measured for this purpose. The presence of NC in the SCC mixture enhanced the compressive strength of the concrete when 5% of NES was added or in the case without the addition of NES compared to the control mixture. The flexural strength enhanced with the incorporation of NC in the SCC increased the flexural strength of the concrete compared to the control mixture, but the incorporation of 5% of NES decreased the flexural strength compared to the mixtures with NC. These results prove the possibility of using crushed ceramics as the coarse aggregate, and NES and NC as substitutes for 5, 7, and 10% of the cement in SCC, because the properties of such SCC in hardened and fresh states are satisfactory.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

Design and Performance Evaluation of a Variable Control Type Fresh Corn Harvester (가변 제어형 식용 풋옥수수 수확기 설계 및 성능평가)

  • Jea Keun Woo;Il Su Choi;Young Keun Kim;Yong Choi;Duck Kyu Choi;Ho Seop Lee;Ji Tae Kim;Young Jun Park;Dong jae Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.40-46
    • /
    • 2023
  • Fresh corn, one of the main food crops, must be harvested by hand. A harvest mechanization technology is required. In this study, a tractor-attached harvester was designed and manufactured to sequentially perform stem reaping, fresh corn detaching, and collecting. The(harvester was designed so that the main device could operate through a hydraulic pump and a generator could be operated through the tractor's PTO. Factor tests were conducted according to cultivars (Ilmichal, Super sweet corn) and working speed (0.12 m/s, 0.17, 0.22). After the factor test, detached corns ratio, collected corns ratio, and damaged corns ratio were analyzed and harvest performance was evaluated. Harvesting performance was good for super sweet corn. Considering operation efficiency, 0.22 m/s was judged to be an appropriate working speed. It was found that it took two hours to work an area of 10 a.

Performance Comparison of Neural Network Models for the Estimation of Instantaneous and Accumulated Powder Exhausts of a Bulk Trailer (벌크 트레일러의 순간 및 누적 분말 배출량 추정을 위한 신경망 모델 성능 비교)

  • Chang June Lee;Jung Keun Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.174-179
    • /
    • 2023
  • Bulk trailers, used for the transportation of powdered materials, such as cement and fly ash, are crucial in the construction industry. The speedy exhaustion of powdered materials stored in the tank of bulk trailers is relevant to improving transportation efficiency and reducing transportation costs. The exhaust time can be reduced by developing an automatic control system to replace the manual exhaust operation. The instantaneous or accumulated exhausts of powdered materials must be measured for automatic control of the bulk trailer exhaust system. Accordingly, we previously proposed a recurrent neural network (RNN) model that estimated the instantaneous exhaust based on low-cost pressure sensor signals without an expensive flowmeter for powders. Although our previous study utilized only an RNN model, models such as multilayer perceptron (MLP) and convolutional neural network (CNN) are also widely utilized for time-series estimation. This study compares the performance of three neural network models (MLP, CNN, and RNN) in estimating instantaneous and accumulated exhausts. In terms of the instantaneous exhaust estimation, the difference in the performance of neural network models was insignificant (that is, 8.64, 8.62, and 8.56% for the MLP, CNN, and RNN, respectively, in terms of the normalized root mean squared error). However, in the case of the accumulated exhaust, the performance was excellent in the order of CNN (1.67%), MLP (2.03%), and RNN (2.20%).

Construction and basic performance test of an ICT-based irrigation monitoring system for rice cultivation in UAE desert soil

  • Mohammod, Ali;Md Nasim, Reza;Shafik, Kiraga;Md Nafiul, Islam;Milon, Chowdhury;Jae-Hyeok, Jeong;Sun-Ok, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.703-718
    • /
    • 2021
  • An irrigation monitoring system is an efficient approach to save water and to provide effective irrigation scheduling for rice cultivation in desert soils. This research aimed to design, fabricate, and evaluate the basic performance of an irrigation monitoring system based on information and communication technology (ICT) for rice cultivation under drip and micro-sprinkler irrigation in desert soils using a Raspberry Pi. A data acquisition system was installed and tested inside a rice cultivating net house at the United Arab Emirates University, Al-Foah, Al-Ain. The Raspberry Pi operating system was used to control the irrigation and to monitor the soil water content, ambient temperature, humidity, and light intensity inside the net house. Soil water content sensors were placed in the desert soil at depths of 10, 20, 30, 40, and 50 cm. A sensor-based automatic irrigation logic circuit was used to control the actuators and to manage the crop irrigation operations depending on the soil water content requirements. A developed webserver was used to store the sensor data and update the actuator status by communicating via the Pi-embedded Wi-Fi network. The maximum and minimum average soil water contents, ambient temperatures, humidity levels, and light intensity values were monitored as 33.91 ± 2 to 26.95 ± 1%, 45 ± 3 to 24 ± 3℃, 58 ± 2 to 50 ± 4%, and 7160-90 lx, respectively, during the experimental period. The ICT-based monitoring system ensured precise irrigation scheduling and better performance to provide an adequate water supply and information about the ambient environment.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.