• Title/Summary/Keyword: construction control

Search Result 5,207, Processing Time 0.038 seconds

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum (새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링)

  • Lee, Seong-Won;Kang, Bang-Hun;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.114-124
    • /
    • 2022
  • The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

Relationship between Corrosion in Reinforcement and Influencing Factors Using Half Cell Potential Under Saturated Condition (습윤 상태에서의 반전위를 이용한 철근 부식과 영향 인자 간의 상관성 분석)

  • Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • In this study, the correlation between the influencing factors on corrosion and Half Cell Potential(HCP) measurement was analyzed considering the three levels of W/C ratio, cover depth, and chloride concentration. The HCP increased with enlarged cover depth, so it was confirmed that the increment of cover depth was effective for control of corrosion. Based on the criteria, the case of 60mm cover depth showed excellent corrosion control with under -200mV, indicating increase of cover depth is an effective method for reducing intrusion of external deterioration factors. When fresh water was injected to the upper part of specimens, very low level of HCP was monitored, but in the case that concentrations of chloride were 3.5% and 7.0%, HCP dropped under -200mV. In addition, the case with high volume of unit binder showed lower HCP measurement like increasing cover depth. Multiple regression analysis was performed to evaluate the correlation between the corrosive influence factors and HCP results, showing high coefficient of determination of 0.97. However, there were limitations such as limited number of samples and measuring period. Through the additional corrosion monitoring and chloride content evaluation after dismantling the specimen, more reasonable prediction can be achieved for correlation analysis with relevant data.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Construction for the Design Project Management System(DPMS) (디자인 프로젝트 관리 시스템(DPMS)의 구성)

  • 우흥룡
    • Archives of design research
    • /
    • v.12 no.3
    • /
    • pp.227-234
    • /
    • 1999
  • We paid attention to the fact that a project will always tend to increase in size even if its scope is narrowing. The complexities and multidisciplinary aspects of projects require that the many parts should be put together so that the prime objectives- performance, time, and cost- are met. These aspects lead to the use of teams to solve problems that used to be solved by individuals. Firstly, We surveyed the design companies and their clients on the design projects, and categorized the design task into 5 phases, that are marketing, planning, idea development, presentation, and follow-up. Among the phases, the presentation has the most difficult task, longest processing time, and highest cost, whereas idea development phase has relatively low cost, longer processing time, and more difficult task. Most of the companies used to be faced several bottlenecks on their design projects - time control, budget control, and resource control. Secondly, for improving the project managing process, we adopted that dividing and analyzing the sub critical paths may help in the effective managing.(Badiru, Adedeji B., 1995) Some critical paths require almost as much attention as the critical path since they have a high potential of becoming critical when changes occur in the network. Therefrom we suggest the Total task weight(Gt) as a management formula for the design project management.${Gt=\mathrm{T}\ast\leftthreetimes\ast1/100}$<\TEX> ( Gt = Total task weight, mathrm{T} = Task Weight, \leftthreetimes= Criticality ) Thirdly, In order to support to managing for the design projects, we set up an application system, which is graphically planning and implementing a complex undertaking. It is helpful to make the control of a project easy. The DPMS(Design Project Management System), which has two sub system. One is Project Screening System(PSS), and another Project Managing System(PMS). In PMS, we divided the design project into three modules; Project Planning, Project Implementation, and Project Evaluation. As a result, the DPMS will contribute to supply the control of a project easily and effectively. Also teams are used for making decisions and taking action with the DPMS. But we need to get further studies on the relationships between the whole project and its tasks.

  • PDF

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

A Study on Various Soil Stiffness Evaluation Methods with Field Test (현장시험을 통한 다양한 지반강성 평가방법에 대한 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Ju-Hyong;Park, Keun-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1373-1380
    • /
    • 2010
  • The plate loading test(PLT) and the field density test are mainly used on the construction of embankments to control the compaction of a limited layer thickness. These two test methods are very time consuming and inefficient, but they are still commonly used as the methods of quality control for soil compaction. In the last 3 decades, many devices such as geogauge, light falling weight deflectometer(LFWD) and dynamic cone penetrometer(DCP) etc., have been introduced into the engineering market with the objective of acquiring in situ stiffness properties of the compacted soil layers. Recently, a new type of sensor, called compactometer, which in mounted on the drum of a roller and measures impact forces continuously with GPS, called as Continuous Compaction Control(CCC), has come into use in many countries such as America, Germany, Japan and so on. The main objective of this paper is to assess the potential use of these new devices as quality control and assurance devices for compacted soil layers. Based on this study, compactometer and the LFWD results werestrongly correlated with the result obtained from the PLT and the field density test.

Construction and Validation of Infection Control Practice Scale for Dental Hygienist (치과위생사의 감염관리 실천도 측정도구의 개발과 타당화)

  • Cho, Young-Sik;Jun, Bo-Hye;Choi, Young-Suk
    • Journal of dental hygiene science
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • Infection control is now recognized as an important quality indicator in dental health service setting. The purpose of this study was to develop and validate Dental Hygienist's Infection Control Practice Scale for quality management of dental health service in Korea. The data of 254 dental hygienists was subjected to exploratory factor analysis using SPSS 16.0 and confirmatory factor analysis using AMOS 16.0. The total items of preliminary scale were 21 items and 5 subscale. Principal component analysis was completed with Varimax rotation. The results show a change in factor structure from 5 factor solution to 4 factor solution. The confirmatory factor analysis confirmed the four subscales(Immunization and periodic tests, Clinical procedure, Handwashing, Personal protection) which have a total of 12 items. After the item deleted because factor loading was low, measured model was tested. The results of the measurement model indicated fit indices: $x^2$= 79.593(df = 38, 0 = 0.000), RMR = 0.045, GFI = 0.940, CFI = 0.904, AGFI = 0.896, NFI = 0.837, TLI = 0.861, RMSEA = 0.67. The squared correlation between four constructs were less than the average variance extracted(AVE) of four constructs. Multiple regression analysis was completed. Dependent variable was the perceived infection control practice by dental hygienist. Independent variables were four summated subscales(R = 0.552, $R^2$= 0.304, Adjusted $R^2$= 0.431, F = 25.813, p = 0.000). Unstandardized coefficients of three independent variables were statistically significant.

  • PDF

Clean Room Structure, Air Conditioning and Contamination Control Systems in the Semiconductor Fabrication Process (반도체 웨이퍼 제조공정 클린룸 구조, 공기조화 및 오염제어시스템)

  • Choi, Kwang-Min;Lee, Ji-Eun;Cho, Kwi-Young;Kim, Kwan-Sick;Cho, Soo-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.202-210
    • /
    • 2015
  • Objectives: The purpose of this study was to examine clean room(C/R) structure, air conditioning and contamination control systems and to provide basic information for identifying a correlation between the semiconductor work environment and workers' disease. Methods: This study was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. The C/R structure and air conditioning method were investigated using basic engineering data from documentation for C/R construction. Furthermore, contamination parameters such as airborne particles, temperature, humidity, acids, ammonia, organic compounds, and vibration in the C/R were based on the International Technology Roadmap for Semiconductors(ITRS). The properties of contamination control systems and the current status of monitoring of various contaminants in the C/R were investigated. Results: 200 mm and 300 mm wafer fabrication facilities were divided into fab(C/R) and sub fab(Plenum), and fab, clean sub fab and facility sub fab, respectively. Fresh air(FA) is supplied in the plenum or clean sub fab by the outdoor air handling unit system which purifies outdoor air. FA supply or contaminated indoor air ventilation rates in the 200 mm and 300 mm wafer fabrication facilities are approximately 10-25%. Furthermore, semiconductor clean rooms strictly controlled airborne particles(${\leq}1,000{\sharp}/ft^3$), temperature($23{\pm}0.5^{\circ}C$), humidity($45{\pm}5%$), air velocity(0.4 m/s), air change(60-80 cycles/hr), vibration(${\leq}1cm/s^2$), and differential pressure(atmospheric pressure$+1.0-2.5mmH_2O$) through air handling and contamination control systems. In addition, acids, alkali and ozone are managed at less than internal criteria by chemical filters. Conclusions: Semiconductor clean rooms can be a pleasant environment for workers as well as semiconductor devices. However, based on the precautionary principle, it may be necessary to continuously improve semiconductor processes and the work environment.

Characteristic Analysis of Dredging and Sedimentation Debris Control Facilities in Inje, Gangwon (강원 인제지역 토석류 사방시설의 준설 및 퇴적 특성)

  • Park, Byungsoo;Jun, Sanghyun;Um, Jaekyung;Cho, Kwangjun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • 5 each permeable and impermeable debris dams were selected to analyze the characteristics of dredging and sedimentation according to facility type in Inje, Gangwon. Field tests for the ground water table and sedimentation characteristics of the selected dams were performed. Furthermore, data of the dredging amount, storage capacity, and drainage area were analyzed for the 51 more debris control facilities. From the results of field tests, it was found that the storage capacity of impermeable debris dam could be not enough when the large debris flow is produced since sediments are accumulated even if large debris flow was not occurred. Drainage can be a problem since the ground water table of impermeable debris dam was reached to the surface of ground. However, it was found that the ground saturation should not occur at heavy rain since ground water table of permeable debris dam was located in lower part of buttress. Furthermore, from the analysis results of relation among the dredging amount, basin area, and capacity of debris control facility, it was found that size of debris control facility was not reflected by the basin area. Effective planning and construction should be accomplished for the future since the real sedimentation amount was not significant even though large debris dams were constructed.

Model Predictive Control for Distributed Storage Facilities and Sewer Network Systems via PSO (분산형 저류시설-하수관망 네트워크 시스템의 입자군집최적화 기반 모델 예측 제어)

  • Baek, Hyunwook;Ryu, Jaena;Kim, Tea-Hyoung;Oh, Jeill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.722-728
    • /
    • 2012
  • Urban sewer systems has a limitation of capacity of rainwater storage and problem of occurrence of untreated sewage, so adopting a storage facility for sewer flooding prevention and urban non-point pollution reduction has a big attention. The Korea Ministry of Environment has recently introduced a new concept of "multi-functional storage facility", which is crucial not only in preventive stormwater management but also in dealing with combined sewer overflow and sanitary sewer discharge, and also has been promoting its adoption. However, reserving a space for a single large-scale storage facility might be difficult especially in urban areas. Thus, decentralized construction of small- and midium-sized storage facilities and its operation have been introduced as an alternative way. In this paper, we propose a model predictive control scheme for an optimized operation of distributed storage facilities and sewer networks. To this aim, we first describe the mathematical model of each component of networks system which enables us to analyze its detailed dynamic behavior. Second, overflow locations and volumes will be predicted based on the developed network model with data on the external inflow occurred at specific locations of the network. MPC scheme based on the introduced particle swarm optimization technique then produces the optimized the gate setting for sewer network flow control, which minimizes sewer flooding and maximizes the potential storage capacity. Finally, the operational efficacy of the proposed control scheme is demonstrated by simulation study with virtual rainstorm event.