• Title/Summary/Keyword: constructed wetlands

Search Result 235, Processing Time 0.027 seconds

Evaluation of constructed wetlands' effectiveness based on watershed characteristics and facility size (유역특성 및 시설규모가 인공습지 효율에 미치는 영향 평가)

  • Choe, Hye-Seon;Reyes, Jett;Jeon, Min-Su;Geronimo, Nash Franz Kevin;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.457-457
    • /
    • 2021
  • 인공습지는 자연이 가진 정화기작을 인위적으로 증가시키기 위하여 조성한 자연기반해법에 해당한다. 인공습지는 습지 내 식물, 미생물, 토양 등의 상호기작에 의하여 오염물질이 제거된다. 인공습지의 오염물질저감효율은 시설의 규모와 유량, 유입물질의 부하량 수리학적 부하량, 체류시간 등의 영향을 받게 된다. 일반적으로 인공습지 적정 규모는 유역 및 기상인자의 특성과 조성목적에 고려하여 산정된다. 본 연구는 전국 35개 지역에 설치된 54개 인공습지를 선정하여 모니터링을 수행하였으며, 2011년부터 2018년에 설치된 시설이다. 54개 시설 중 도심지역에 13개, 농업지역 25개, 공업지역 3개, 상업지역 3개, 축산 10개가 설치되어있다. 습지형태는 Cell형 자유수면형 인공습지(Free Water Surface, Cell-FWS), 유로형(Flow) 자유수면형 인공습지(Cell-FWS), Cell과 Flow형이 결합된 Hybrid-FWS, 수직흐름형 인공습지(vertical flow constructed wetland)와 수평지하흐름형 인공습지(vertical flow constructed wetland)가 결합된 HYBIRD 형 습지로 구분된다. 연구결과, 일반적으로 SA/CA 비율이 클수록 오염물질의 저감효율은 증가하는 것으로 나타났다. 오염 물질별 인공습지 규모를 비교할 경우 저감효율 60%에서 인공습지의 규모는 유기물>영양염류>입자상물질 순으로 나타났다. 목표 제거효율 60%에서 SA/CA 비는 BOD에서 약 3.2%, COD에서 2.5%, SS에서 1.9%, TN 2.5%, TP 2.3%로 나타났다. 입자상물질인 SS는 유기물 및 영양염류에 비하여 유역면적 대비 시설면적이 가장 적게 나타났으며, 유기물질 제거에 큰 시설규모가 필요한 것으로 나타났다. 따라서 인공습지 설계시 유역 토지이용 및 강우특성을 고려하여 적정한 수질과 유량모니터링이 필요하며, 이를 토대로 목표 오염물질 선정이 중요한 것으로 나타났다. 또한, 농업지역의 최적화된 인공습지 위치는 임야가 20~30%, 밭이 20% 이하, 논이 10~50%를 포함하는 곳이 적정한 것으로 평가되었다. 도시지역 인공습지는 도시면적이 증가할수록 효율이 크게 변하지 않기에 가용위치가 적정한 위치로 평가된다. 인공습지의 효율은 유역의 세부 토지이용에 크게 의존하는 것으로 평가되었다. 따라서 인공습지 설계시 농업지역에서는 임야, 밭 및 논의 적정면적을 고려하여 인공습지 위치가 결정되어야 하는 것으로 나타났다.

  • PDF

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

An approximate study on flood reduction effect depending upon weir or gate type of lateral overflow structure of washland (강변저류지 월류부에서 월류제 또는 수문 형식에 따른 홍수저감효과에 관한 개략적 연구)

  • Ahn, Tae Jin
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.573-583
    • /
    • 2013
  • Construction of large-scale structures such as dams would be suggested actively to cope with change of flood characteristics caused by climate change. However, due to environmental, economic and political issues, dams are not ideally constructed. Thus flood damage reduction planning projects would get started including washland or detention pond for sharing the flood in basin. The washland made artificially by human being is an area of floodplain surrounded by bank to be intentionally inundated by overflowing through overflow structure adjacent to main channel during flood season. Flood reduction capacity at just downstream of each washland could be affected by type, length, and crest elevation of overflow structure in addition to shape of design hydrograph, storage volume of washland, etc.. In this study flood reduction effects of washland are estimated for overflow weir type and gate type to compare the results of flood reduction respectively subjected to given hydrograph in sample site, the Cheongmicheon stream. It has been shown that even if gate type at overflow structure could yield more flood reduction than overflow weir type, economic aspect such as initial cost, operation cost and maintenance cost should be considered to select the type of overflow structure because flood reduction rate by gate type could not be significant value from engineering point of view.

Development of Optimization Model for Long-term Operation Planning of the Hydropower Reservoirs in Han River Basin (한강수계 발전용댐 장기 운영계획 수립을 위한 최적화 모형 구축)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.69-79
    • /
    • 2019
  • In Korea, more than 60% of the whole lands are mountainous area. Since many decades ago, hydroelectric power plants have been constructed and eco-friendly energy has been produced. Hydropower can cope with the rapidly changing energy supply and demand, and produce eco-friendly energy. However, when the reservoir is built, it is often inevitable to damage the environment due to construction of large structure. In this study, the optimal reservoir operation model was developed to maximize power generation by monthly operation for long-term operation planning. The dam operation model was developed using the linear programming which is widely used in the optimal resources allocation problems. And the reservoir operation model can establish monthly operation plan for 1 year. Linear programming requires both object function and constraints to be linear. However, since the power generation equation is nonlinear, it is linearized using the Taylor Expansion technique. The optimization results were compared with the 2009-2018 historical data of five hydropower reservoirs. As a result, the total optimal generation is about 10~37% higher than the historical generation.

Habitat Fragmentation by a Levee and Its Impact on Frog Population in the Civilian Control Zone (제방으로 인한 생태계 분절이 민간인통제구역 양서류에 미친 영향)

  • Ju, Jaehyoung;Kim, Jae Hyun;Kim, Seung Ho
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • We examined whether an artificial levee constructed on prime amphibian habitat influences fragmentation. Four different sites on both sides of a levee in the Civilian Control Zone(CCZ) were probed. Sites 1 and 2 are rice paddies on one side of the levee, and Site 3 is the stream that locates in the same side. All the three sites have water conditions of seasonal variance. On the other side, Site 4 consists of rice paddies with a stable condition of water supply, irrigated through a canal. The research sites were frequented and the frog populations were closely monitored. The investigation identified five species. Pelophylax nigromaculatus was the most frequent (n=295), followed by Hyla japonica (n=220) and Glandirana rugosa (n=124). Three Bufo gargarizans and eight Rana coreana were also found. The amphibians, however, were found to relocate themselves according to water condition to rice paddies or stream only within one side of the levee. Despite having ample sources of water and foods, Site 4 lacked large populations of frogs, even when droughts came. Both the species dominance index and the richness index indicated a more favorable living condition of the one side of the levee (Sites 1 and 2) over the other.

Species Diversity and Community Characteristics of Benthic Macroinvertebrates from Irrigation Ponds in the Western CCZ area, Korea (서부 민간인출입통제구역 일대 둠벙의 저서성대형무척추동물 종 다양성 및 군집 특성)

  • Chung, Hyun-Yong;Yeom, Cheol-Min;Kim, Jae Hyun;Park, Shinyeong;Lee, Yae-Won;Pyo, Gina;Kim, Seung Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.173-184
    • /
    • 2020
  • Irrigation ponds, 'dumbeong', which are artificially constructed water resources for traditional farming, serve as a biological shelter connecting seasonally created rice paddy fields to local freshwater ecosystems. This 2018 study surveyed 143 irrigation ponds in the western Civilian Control Zone (CCZ) area from August to September, revealing species diversity and community characteristics of benthic macroinvertebrates. A total of 13,454 individuals of macroinvertebrates were captured and classified into 3 phyla, 5 classes, 17 orders, 59 families, 192 species. Among Insecta, the most frequently recorded order was Odonata, 55 spp.(33.7%), followed by Coleoptera, 52 spp. (31.9%), Hemiptera, 34 spp. (20.8%), Diptera, 17 spp. (9.8%), Ephemeroptera, 3 spp. (2.4%), Trichoptera, 1 spp. (0.6%) and Lepidoptera, 1 spp. (0.6%). Taxon of non-Insecta consisted of Mollusca, 14 spp. (48.2%), Annelida, 11 spp. (37.9%) and Arthropoda, 4 spp. (3.4%). The analysis of Diversity Index (H'), Species Richness Index (RI), Dominance Index (DI) and Evenness Index (J') revealed the general stability of communities in the study sites. A total of 28 rare species were found in 98 study sites, including three endangered species designated by the Ministry of Environment. These results showed that the species diversity and rarity of macroinvertebrates in the study area were greater than those of previous research on lentic wetlands (lake, etc.) and national conserved wetlands(Upo-swamp, etc.) in Korea. A conservation planning of aquatic ecosystems in the western CCZ area, therefore, should focus on conservation of irrigation ponds.

The riparian vegetation community models according to hydrologic and soil environments - Case of Daecheongho lake reservoirs - (수문 및 토양환경을 고려한 수변식생군락 조성 모델 - 대청호 저수지를 사례로 -)

  • Park, Miok
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.144-154
    • /
    • 2017
  • The riparian vegetation is one of corridor type ecosystems, an ecotone and able to improve the ecological soundness by structural and functional link. And they act as habitats, sources and sinks of species, conduits, filters and barriers. This study was carried out to develop the vegetation model for the fluctuation areas of lake reservoirs consider of hydrologic and soil environments according to the vegetation structure of the reference ecosystem. To develop the case study, 2 sites within 10degree slope of the Daecheong Lake were selected. The riparian vegetation models were built by the results of GIS analysis, remote satellite analysis, field survey results, consider of water level, flooded frequency, soil and topographic index, land cover or land use etc. 1) study area varied from FWL to -5m of NFWL, 2) slope 10% below, 3) vegetations flooded below 100days yearly are Salix koreensis, Salix chaenomeloides, Salix gracilistyla, 4)land cover type classified wildlife grassland, abandoned paddy field, cropland according to landuse (or landcover), 5)finally model was constructed as ecological landscape forest. The model designs were suggested by 2 types in Daecheong lake reservoir. The model for the riparian vegetation corridors could be the basic and useful data to improve the ecological and landscape properties.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Comparison of Nitrogen Removal in a Horizontal Subsurface-Flow Wetland Purifying Stream Water with and without Litter Layer on its Surface (하천수를 정화하는 수평흐름 여과습지의 표면 잔재물층 유무에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.1
    • /
    • pp.111-122
    • /
    • 2009
  • Abatements of TN and ${NO_3}^-$-N in a horizontal subsurface-flow wetland with litter layer on its surface were compared with those without one. The wetland was constructed in 2001 on floodplain of the Gwangju Stream which flows through Gwangju City in Korea. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm was filled with crushed granites (15~40mm in diameter) and a middle layer of 10cm had pea pebbles. An upper layer of 5cm contained coarse sands. Reeds (Phragmites australis) growing in natural wetlands were transplanted on its surface. Water of the stream was channelled into the wetland by gravity flow and its effluent was discharged back into the stream. Average Litter layer of 12.2cm was formed on its surface in 2007. The layer and above-ground parts of reeds were eliminated in April 2008. Volumes and water quality of influent and effluent of the wetland were analyzed from May to November in 2007 and 2008, respectively. Inflow into the wetland both in 2007 and 2008 averaged approximately 40$m^3$/day and hydraulic residence time both in 2007 and 2008 was about 1.5days. Influent TN concentration in 2007 and 2008 averaged 3.96 and 3.89mg/L, respectively and average influent ${NO_3}^-$-N concentration in 2007 and 2008 was 2.11 and 2.05mg/L, respectively. With a 0.05 significance level, influent concentrations of TN and ${NO_3}^-$-N, temperatures and pH of effluent, and heights and stem numbers of reeds showed no difference between the wetland with litter layer and without one. TN retention in the wetland with litter layer and without one averaged 64,76 and 54.69%, respectively and ${NO_3}^-$-N removal averaged 60.83 and 50.61%, respectively. Both TN and ${NO_3}^-$-N abatement rates in the wetland with litter layer were significantly high (TN abatement: p<0,001, ${NO_3}^-$-N abatement: p=0.001) when compared with those without one. The subsurface-flow wetland having litter layer on its surface was more efficient for TN and ${NO_3}^-$-N removal.

Land-use Enhancement Benefit According to Flood Safety (치수안전도에 따른 토지이용의 편익 분석)

  • Lee, Jin Ouk;Kim, Hung Soo;Shim, Myung Pil;Choi, Seung An
    • Journal of Wetlands Research
    • /
    • v.6 no.4
    • /
    • pp.45-57
    • /
    • 2004
  • This study analyzed the effect of land-use enhancement benefits with the flood safety which it is not quantified in the flood damage analysis, Korea. The land-use enhancement benefits mean the enhancement of land-use value according to the rise of flood safety of the protected area by the flood control projects and we performed the analysis of land-use enhancement benefits with the publicly announced land price which can objectively represent the land-use value of a specific area. We verified the statistical significance of the floating rate of land price according to the effects of flood control projects and the characteristics of a river through the analysis of variance. As a result of the verification, the increase of land-use value was represented by the net annual average floating rate of land price. The flood safety was classified as flood damage potential and flood prevention capacity. The flood damage potential was classified according to the rate of urbanization and flood prevention capacity was represented by the conditional annual non-exceedance probability obtained from the frequency analysis with uncertainty for the flood discharge. The study areas were small urban cities and we calculated the conditional annual non-exceedance probabilities of 200-year flood event for the levees constructed with the conditions of 10- and 50-year design frequency. The result was shown that the net annual average floating rate of land price would be raised nearly 5 times for 10%-increase of the conditional annual non-exceedance probability in small city areas.

  • PDF