• Title/Summary/Keyword: constrained minimization

Search Result 88, Processing Time 0.026 seconds

A Study on the Economics of Container Ships at Preliminary Design Stage (초기설계단계(初期設計段階)에서의 콘테이너선(船)의 경제성(經濟性)에 관한 연구(硏究))

  • Dong-Kon,Lee;S.I.,Ma
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 1984
  • This paper is concerned with an optimum design study of containerships in preliminary stage by applying economic criteria. The Net Present Value Index (NPVI) and the Required Freight Rate(RFR) are used as measures of merit. Hooke & Jeeves direct search method and External Penalty Function method of Sequential Unconstrained Minimization Techniques(SUMT) are used for solving constrained nonlinear optimization problem. Sensitivity analysis is carried out to investigate the effect on the optimum solution due to change of values in some parameters such as crane capacity, load factor, oil price, ship speed and the ratio between loaded FEU and TEU.

  • PDF

Minimizing Project Quality Costs by Activity-Based Prevention (활동기준예방에 의한 프로젝트 품질코스트 최소화)

  • Kim, Jong-Yul;Kang, Chang-Wook;Hwang, In-Keuk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.89-97
    • /
    • 2011
  • Traditional quality control for manufacturing or service sector is not suitable for the quality control of a project as the project is one-time task constrained by time, cost, and quality. To meet the internal and external customers' requirements, quality costs approach to the project will be effective. Hence, we propose PONC (price of nonconformance) estimation procedure and a mathematical model, which are focused on activity-based prevention in the execution step and warranty step of EPLC (extended project life cycle). This procedure and model will help project manager develop preventive action plan for project quality costs minimization from nonconformance risk activities and PONC estimates information.

Minimization of Die Wear Rate by Using Multi-Objective Optimization in Three-Dimensional Extrusion Processes (3차원 압출 공정에서 다목적 최적화 기법을 이용한 금형 마모율의 최소화)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.262-265
    • /
    • 2005
  • A shape optimization of flow guide is accomplished to minimize the wear rate of die in three-dimensional flat-die extrusion processes. In order to achieve the balanced flow and the uniformed distribution of the effective strain during the extrusion, a multi-objective optimization is implemented. During the process of optimization formulation, the flow balance and the deviation of strain is considered as constrained conditions. The proposed approach is applied to an extrusion of H section. Through the optimization, it has been confirmed that the wear rate of die can be minimized satisfying the constraint.

  • PDF

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

A Method to Optimize Stability and Wheel Wear in Railway Bogies

  • Mazzola, L.;Alfi, S.;Bruni, S.
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.95-105
    • /
    • 2010
  • In this paper, a procedure is proposed to optimize bogie suspension parameters in view of minimizing wheel wear produced by curve negotiation, though meeting stability requirements. The problem is dealt with in the form of a constrained minimization problem, in which wheel wear evaluated over a given service scenario is introduced as the cost function to be minimized, and the requirements on vehicle stability are formulated in terms of constraints. The procedure is applied to the case of a non-powered passenger car for high-speed service, and the results obtained are discussed. It is shown that long wheelbase bogie may provide better overall performances than bogies having comparatively short wheelbase. Furthermore, a sensitivity analysis is performed, to define the effect on the optimization results of improving the performances of the yaw dampers in the bogie and of using a different wheel profile.

  • PDF

An Iterative Image Reconstruction Method for the Region-of-Interest CT Assisted from Exterior Projection Data (Exterior 투영데이터를 이용한 Region-of-Interest CT의 반복적 영상재구성 방법)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.132-141
    • /
    • 2014
  • In an ordinary CT scan, a large number of projections with full field-of-view (FFOV) are necessary to reconstruct high resolution images. However, excessive x-ray dosage is a great concern in FFOV scan. Region-of-interest (ROI) CT or sparse-view CT is considered to be a solution to reduce x-ray dosage in CT scanning, but it suffers from bright-band artifacts or streak artifacts giving contrast anomaly in the reconstructed image. In this study, we propose an image reconstruction method to eliminate the bright-band artifacts and the streak artifacts simultaneously. In addition to the ROI scan for the interior projection data with relatively high sampling rate in the view direction, we get sparse-view exterior projection data with much lower sampling rate. Then, we reconstruct images by solving a constrained total variation (TV) minimization problem for the interior projection data, which is assisted by the exterior projection data in the compressed sensing (CS) framework. For the interior image reconstruction assisted by the exterior projection data, we implemented the proposed method which enforces dual data fidelity terms and a TV term. The proposed method has effectively suppressed the bright-band artifacts around the ROI boundary and the streak artifacts in the ROI image. We expect the proposed method can be used for low-dose CT scans based on limited x-ray exposure to a small ROI in the human body.

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.