• Title/Summary/Keyword: constrained geometry catalyst

Search Result 7, Processing Time 0.022 seconds

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene (이핵 CGC의 구조적인 특성과 에틸렌/1-헥센의 공중합 거동과의 관계)

  • Cao, Phan Thuy My;Nguyen, Thi Le Nhon;Nguyen, Thi Le Thanh;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.

Preparation of Dinuclear, Constrained Geometry Zirconium Complexes with Polymethylene Bridges and an Investigation of Their Polymerization Behavior

  • Noh, Seok-Kyun;Jiang, Wen-Long
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • We have prepared the polymethylene-bridged, dinuciear, half-sandwich constrained geometry catalysts (CGC)[Zr(η$\^$5/:η$^1$-C$\_$9/H$\_$5/SiMe$_2$NCMe$_3$)]$_2$[(CH$_2$)$\_$n/][n=6(9), n=12(10)]by treating 2 equivalents of ZrCl$_4$with the corresponding tetralithium salts of the ligands in toluene. $^1$H and $\^$13/C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuciear structure. In $^1$H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuciear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs 9 and 10 are not efficient for copo-lymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst 10, which contains a 12-methylene bridge, is larger than that of 9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuciear CGC. The activities increase as the polymerization temperature increases from 40 to 70$^{\circ}C$. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuciear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

Copolymerization of Ethylene and 1-Hexene via Polymethylene Bridged Cationic Dinuclear Constrained Geometry Catalysts (폴리메틸렌 다리로 연결된 양이온 이핵 CGC를 이용한 에틸렌과 1-헥센의 공중합)

  • Bian, Feng Ling;Que, Dang Hoang Dan;Lyoo, Won-Seok;Lee, Dong-Ho;Noh, Seok-Kyun;Kim, Yong-Man
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2007
  • We have prepared the dinuclear half-sandwich CGC(constrained geometry catalyst) with polymethylene bridge $[Zr(({\eta}^5\;:\;{\eta}^1-C_9H_5SiMe_2NCMe_3)Me_2)_2\;[(CH_2)_n]$ [n=6(4), 9(5), 12(6)] by treating 2 equivalents of MeLi with the corresponding dichlorides compounds. To study the catalytic behavior of the dinuclear catalysts we conducted copolymerization of ethylene and 1-hexene in the presence of three kinds of boron cocatalysts, $Ph_3C^+[B(C_6F_5)_4]^-\;(B_1),\;B(C_6F_5)_3\;(B_3)$, and $Ph_3C^+[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^{2-}\;(B_2)$. It turned out that all active species formed by the combination of three dinuclear CGCs with three cocatalyst were very efficient catalysts for the polymerization of olefins. The activities increase as the bridge length of the dinuclear CGCs increases. At the same time the dinuclear cocatalyst exhibited the lowest activity among three cocatalysts. The prime observation is that the dinuclear cocatalyst gave rise to the formation of the copolymers with the least branches on the polyethylene backbone.

Effects of Structure of the Bridge on Polymerization Behavior of Dinuclear Constrained Geometry Catalysts and Properties of Ethylene-Styrene Copolymers (다리리간드의 구조가 이핵 CGC의 중합 특성과 생성된 에틸렌/스티렌 공중합체에 미치는 영향)

  • Pham, Nhat Thanh;Nguyen, Thi Dieu Huyen;Thanh, Nguyen Thi Le;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • Polymerization properties of six dinuclear constrained geometry catalysts (DCGC) were investigated. The different length bridges of three catalysts were para-phenyl (Catalyst 1), para-xylyl (Catalyst 2), and para-diethylene phenyl (Catalyst 6). The other three DCGC have the same para-xylyl bridge with the different substituents at the phenyl ring of the bridge. The selected substituents were isopropyl (Catalyst 3), n-hexyl (Cataylst 4), and n-octyl (Catalyst 5), It was found that the longer catalyst not only exhibited a greater activity but also prepared a higher molecular weight copolymer. The catalyst 3 having a bulky isopropyl substituent revealed the lower activity but formed the highest molecular weight polymer comparing with the other alkyl substituted DCGCs. These results were able to be understood on the basis of the electronic and steric characteristics of the bridge. This study confirms that the control of the bridge structure of DCGC may contribute to control the microstructure of polymers.

Polymerization with Dinuclear Metallocene Compounds

  • Lee, Dong-ho;Noh, Seok-Kyun
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.71-83
    • /
    • 2001
  • The metallocene compounds had been applied to the polymerizations of olefins and vinyl monomers with methylaluminoxane (MAO) cocatalyst, and they have usually one transition metal atom per molecule, i.e., mononuclear metallocene. Recently it has been found that the dinuclear metallocene compounds containing two transition metal atoms exhibit the peculiar polymerization behaviors for olefins and vinyl monomers. In this article, the dinuclear metallocenes are classified into four groups of dinuclear bent-metallocene, dinuclear ansa-metallocene, dinuclear constrained geometry catalyst and dinuclear half-metallocene, and then the synthesis of dinuclear metallocene of each group as well as the polymerization behaviors for ethylene, propylene, and styrene are described.

  • PDF

Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst: I. Effect of Catalyst (메탈로센 촉매를 애용한 에틸렌과 시클로올레핀의 공중합 : I. 촉매의 영향)

  • 이동호;정희경;김우식;민경은;박이순
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.445-452
    • /
    • 2000
  • The copolymerization of ethylene (E) and norbornene (N) was examined by using various metallocene catalysts and modified-MAO(MMAO) cocatalyst. For $C_2$-symmetry catalysts such as rac-Et(Ind)$_2$ZrC $l_2$, M $e_2$Si(Ind)$_2$ZrC $l_2$, M $e_2$Si(Cp)$_2$ZrC $l_2$ and Cs-symmetrical iPr(FluCp)ZrC $l_2$ as well as CGC and di-bridged zirconocene, the effects of catalyst structure and [N]/[E] feed ratio on catalyst activity, thermal property and [N] content of copolymer (COC) was investigated. For rac-Et(Ind)$_2$ZrC $l_2$ catalyst of a constant [N]/[E] feed ratio, the appropriate conditions of [Al]/[Zr] mole ratio, polymerization temperature and cocatalyst structure were found to be 3000, 4$0^{\circ}C$, MMAO cocatalyst, respectively. As [N]/[E] feed ratio increased, the incorporation of norbornene to copolymer increased while, the activity of catalyst decreased except for iPr(FluCp)ZrC $l_2$ With consideration of catalyst activity as well as N content, it was found that rac-Et(Ind)$_2$ZrC $l_2$/MMAO system exhibited relatively high activity and controllable $T_{g}$. Monomer reactivity ratio was determined by Kelen-Tudos method..

  • PDF

Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts

  • Zhu, Yin-Bang;Jeong, Eung-Yeong;Lee, Bae-Wook;Kim, Bong-Shik;Noh, Seok-Kyun;Lyoo, Won-Seok;Lee, Dong-Ho;Kim, Yong-Man
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.430-436
    • /
    • 2007
  • The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalysts; $Ti({\eta}^5 : {\eta}^1-2-hexylindenyl)SiMe_2NCMe_3$ (3), $(Cp^* SiMe_2NCMe_3)$Ti (Dow CGC) (4) and ansa-$Et(Ind)_2ZrCI_2$ (5), were also studied for the copolymerization of ethylene and NBE. It was found that the activity increased in the order: 1 < 2 < 3 < 5 < 4, indicating that the presence of the bridge between two the CGC units contributed to depressing the polymerization activity of the CGCs. This result strongly suggests that the implication of steric disturbance due to the presence of the bridge may playa significant role in slowing the activity. Dinuclear CGCs have been found to be very efficient for the incorporation of NBE onto the polyethylene backbone. The NBE contents in the copolymers formed ranged from 10 to 42%, depending on the polymerization conditions. Strong chemical shifts were observed at ${\delta}$42.0 and 47.8 of the isotactic alternating NBE sequences, NENEN, in the copolymers with high NBE contents. In addition, a resonance at 47.1 ppm for the sequences of the isolated NBE, EENEE, was observed in the $^{13}C-NMR$ spectra of the copolymers with low NBE contents. The absence of signals for isotactic dyad at 48.1 and 49.1 ppm illustrated there were no isotactic or microblock (NBE-NBE) sequences in the copolymers. This result indicated that the dinuclear CGCs were effective for making randomly distributed ethylene-NBE copolymers.