• Title/Summary/Keyword: constrained Bayes estimator

Search Result 5, Processing Time 0.018 seconds

A Comparative Study for Several Bayesian Estimators Under Balanced Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.291-300
    • /
    • 2006
  • In this research, the performance of widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained empirical Bayes estimator are compared by means of a measurement under balanced loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

Bayes Risk Comparison for Non-Life Insurance Risk Estimation (손해보험 위험도 추정에 대한 베이즈 위험 비교 연구)

  • Kim, Myung Joon;Woo, Ho Young;Kim, Yeong-Hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1017-1028
    • /
    • 2014
  • Well-known Bayes and empirical Bayes estimators have a disadvantage in respecting to overshink the parameter estimator error; therefore, a constrained Bayes estimator is suggested by matching the first two moments. Also traditional loss function such as mean square error loss function only considers the precision of estimation and to consider both precision and goodness of fit, balanced loss function is suggested. With these reasons, constrained Bayes estimators under balanced loss function is recommended for non-life insurance pricing.; however, most studies focus on the performance of estimation since Bayes risk of newly suggested estimators such as constrained Bayes and constrained empirical Bayes estimators under specific loss function is difficult to derive. This study compares the Bayes risk of several Bayes estimators under two different loss functions for estimating the risk in the auto insurance business and indicates the effectiveness of the newly suggested Bayes estimators with regards to Bayes risk perspective through auto insurance real data analysis.

A Study on the Application of Constrained Bayes Estimation for Product Quality Control (Constrained 베이즈 추정방식의 제품 품질관리 활용방안에 관한 연구)

  • Kim, Tai-Kyoo;Kim, Myung Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • Purpose: The purpose of this study is to apply the constrained Bayesian estimation methodology for product quality control process and prove the effectiveness of the product management by comparing with the well-known Bayes estimator through data performance result. Methods: The Bayes and constrained Bayes estimators were produced based on the theoretical background and for confirming the effectiveness of suggested application, the deviation index was defined and calculated for the comparison. Results: The statistical analysis result shows that applying the suggested estimation methodology, that is, constrained Bayes estimator improves the effectiveness of the index with regard to reduce the error by matching the first two empirical moments. Conclusion: Considering the advanced Bayesian approaches such as constrained Bayes estimation for the product quality control process, the newly defined deviation index reduces the error for estimating the parameter histogram which is reflected both location and deviation parameters and furthermore various Bayesian perspective approaches seems to be meaningful for managing the product quality control process.

Constrained Bayes and Empirical Bayes Estimator Applications in Insurance Pricing

  • Kim, Myung Joon;Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.321-327
    • /
    • 2013
  • Bayesian and empirical Bayesian methods have become quite popular in the theory and practice of statistics. However, the objective is to often produce an ensemble of parameter estimates as well as to produce the histogram of the estimates. For example, in insurance pricing, the accurate point estimates of risk for each group is necessary and also proper dispersion estimation should be considered. Well-known Bayes estimates (which is the posterior means under quadratic loss) are underdispersed as an estimate of the histogram of parameters. The adjustment of Bayes estimates to correct this problem is known as constrained Bayes estimators, which are matching the first two empirical moments. In this paper, we propose a way to apply the constrained Bayes estimators in insurance pricing, which is required to estimate accurately both location and dispersion. Also, the benefit of the constrained Bayes estimates will be discussed by analyzing real insurance accident data.