• Title/Summary/Keyword: constitutive equation

Search Result 471, Processing Time 0.024 seconds

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage (the 1st Report) -Development of Elasto-Plastic Damage Constitutive Model- (등방성 손상을 고려한 탄소성 대변형 문제의 유한요소해석(제1보) -탄소성 손상 구성방정식 개발-)

  • 노인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In this paper a new constitutive model for ductile materials was proposed. This model can describe the material degradation due to the evolution of isotropic damage during elasto-platic deformation. The plastic flow rule was derived under the framework of thermodynamic approach of continuum damage mechanics(CDM) in which plastic strain hardening parameters and isotropic damage were taken as thermodynamic state variables. And the process to determine material constants for constitutive model using an experimental data was presented.

  • PDF

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

A Behaviour of Clayey Foundation Using Elasto-plastic Constitutive Model -With an Emphasis on the Numerical Analysis of 2-dimensional Model Foundation- (탄.소성구성식에 의한 점토지반의 거동해석(II) -2차원 모형지반의 수치해석을 중심으로-)

  • 이윤수;이광동;오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.83-94
    • /
    • 1994
  • The first part of this study dealt with the determination of soil parameters for Lade's double work-hardening model using the raw data obtained from cubical and cylinderal triaxial tests At present, it should be investigated which test can simulated satisfactorily the behavior of soft clayey foundation. In this regard, plate bearing test on the 2-dimentional model foundation(218cm long, 40cm wide, 19&m high) was performed, and finite element analysis carried out to abtain the behavior of the foundation. Settlement, lateral displacement, displacement vector and mode of failure were measured and these values were compared with numerical values in order to validate the numerical program developed by authors. The FEM technique was based on Christain-Boehmer's method, in which the displacement is obtained at each nodal point while stress and pore water pressure at each element.In this research, Biot's equation, which explains was elahorately the phisical meaning of consolidation, was selected, as a governing equation, coupled with Lade's double surface work-hardening constitutive model.

  • PDF

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

Large Deformation Formulation of a Hypoelasto-plastic Constitutive Model for Soils (흙의 속도형식 탄소성구성모델에 대한 대변형도 정식화)

  • Oh, Se-Boong;Lee, Seung-Hyun;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.277-286
    • /
    • 2003
  • A constitutive equation was implemented in order to model the behavior in overall ranges from small to large strains, which is based on anisotropic hardening rule and total stress concept. The constitutive model was implemented in ABAQUS code in which large deformation analysis can be performed accurately and efficiently. The formulation includes (1) finite strain plasticity on the basis of Jaumann stress rate, (2) implicit stress integration and (3) consistent tangent moduli. A large deformation analysis was performed with the constitutive model using ABAQUS program. In the analysis of an actual embankment, it was found that the proposed model was formulated accurately and efficiently.

Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method (변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링)

  • Choi, Yoon Suk;Cho, Kyung-Mox;Nam, Dae-Geun;Choi, Il-Dong
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai;Choi, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.