• Title/Summary/Keyword: constant rate of change

Search Result 533, Processing Time 0.028 seconds

Study on the Characteristics of Shear Strength on the Weathered Granite Soil Slope in Accordance with the Rainfall (강우에 따른 화강암질 풍화토 사면의 전단강도 특성에 관한 연구)

  • Shim Tae-Sup;Kim Sun-Hak;Ki Wan-Seo;Joo Seung-Wan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.349-360
    • /
    • 2004
  • This study calculated the pore water pressure, the depth of seepage, the constant of the strength in accordance with the slope inclination and the rainfall intensity over the slope built by the weathered granite soil (SP, SM). And, the change of the shear strength in accordance with the rainfall has been compared and analyzed by applying the shear strength formula of the unsaturated soil. As a result, the rainfall intensity is stronger and the slope inclination is gentler the seepage speed in accordance with the rainfall became faster proportionally. As a result of comparing and analyzing both the theoretical value of Lumb and the actual value of the model, it can be said that the actual value is faster. Since SM shows the bigger shear strength than SP, it can also be said that as the granules increase, the coefficient of permeability becomes smaller; and as the seepage rate became smaller, it affects the seepage speed. Likewise, the shear strength within the slope displays the smallest shear strength at the inclination of 1:1.5 the reason of its decrease turned out that it was due to the increase of the pore water pressure.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Effects of Moisture Content on Recrystallization of Rice Starch Gels (쌀전분겔의 재결정화에 미치는 수분함량의 영향)

  • Baik, Moo-Yeol;Kim, Kwang-Joong;Cheon, Ki-Cheol;Ha, Yeon-Chul;Kim, Wang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.939-946
    • /
    • 1997
  • Effects of moisture content on the gelatinization and recrystallization of non-waxy and waxy rice starch gels were investigated by differential scanning calorimetry (DSC). The recrystallization rates of the starch gels containing various moisture contents $(40{\sim}70%)$ were analyzed by Avrami equation. The waxy rice starch had higher gelatinization temperature and enthalpy than non-waxy one. The highest degrees of recrystallization in both rice starch gels stored at $4^{\circ}C$ were shown at 40%, and recrystallizations above 80% moisture content were not found. The degree of recrystallization of waxy one was higher than that of non-waxy one in the range of 40 to 60% moisture content. The Avrami exponents (n) of both rice starch gels were near to 1.0 and the time constant (1/k) was increased with increasing moisture content in the range of 40 to 70% moisture content. The recrystallization rate of waxy rice starch gel was slower than that of non-waxy one. The recrystallization of rice starch gels could be explained by the change of ice melting enthalpy during storage. The Wg's, represented the maximum practical amount of plasticizing water, were about 29.9% and 28.2% for non-waxy and waxy rice starch gels, respectively.

  • PDF

Quality Properties of Peeled Ginger by Controlled Atmosphere(CA) Storage (CA저장에 의한 박피생강의 품질특성)

  • Lee, Myung-Hee;Lee, Kyoung-Hoe;Kim, Kyung-Tack
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.342-348
    • /
    • 2011
  • The quality properties of peeled ginger (PG) were investigated during CA storage at different $CO_2$ concentrations. $O_2$ concentration was kept constant at 5% while $CO_2$ of 6%, 14%, 22% and 30% were used. It was found that the weight loss rate tended to decrease with an increase of $CO_2$. In the case of fixed $10^{\circ}C$ storage, the L-value and a-value of the exterior color in treatment increased more than that of control with respect to time, while the b-value of the exterior color and the cutting plane color showed no significant difference. In the exterior color, the results of PG-$25^{\circ}C$ showed similar with PG-$10^{\circ}C$ except b-value of the exterior color which showed not a little change. The cutting plane color did not showed significantly difference in the PG samples between $25^{\circ}C$ and $10^{\circ}C$. Hardness of the PG during storage was found to decrease most severely at 6% of $CO_2$ concentration regardless of storage temperature. The growth of microorganisms during storage of the PG tended to be restrained as $CO_2$ concentration increased. However, microorganisms, when maintained at $25^{\circ}C$ storage, multiplied rapidly to $10^8$ CFU/g within 4 days regardless of concentration.

Effects of Low Dose γ-Radiation on Photosynthesis of Red Pepper (Capsicum annuum L.) and the Reduction of Photoinhibition (저선량 γ선 조사가 고추의 광합성과 광 스트레스 경감에 미치는 효과)

  • Lee, Hae-Youn;Baek, Myung-Hwa;Park, Soon-Chul;Park, Youn-Il;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • The effect of low dose $\gamma$ radiation on photosynthesis and the reduction of photoinhibition in red pepper plant was investigated. The seedling height leaf width and leaf length of pepper were stimulated in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than in the control. To investigate the effect of low dose $\gamma$ radiation on response to high light stress, photoinhibition was induced in leaves of pepper by illumination of high light (900 $\mu mol/m^2/s$). Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, was decreased with increasing illumination time by 50% after 4 hours while Fo did not change. However, Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the photoinhibition was decreased by the low dose $\gamma$ radiation. Changes in the effective quantum yield of PSII, $\Phi_{PSII}$, and 1/Fo-1/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Fm. And NPQ was decreased after photoinhibitory treatment showing no difference between the control and the 4 Gy irradiation group. These results showed the positive effect of low dose $\gamma$ radiation on the seedling growth and the reduction of photoinhibition.

The Self-healing and Ageing Effect of OPC-GGBFS Cement in Sea-water and Tap-water (해수와 담수에서 OPC-GGBFS 시멘트의 자기치유와 재령효과)

  • Kim, Tae-Wan;Kang, Choonghyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • The paper presents experimental results of self-healing effects of OPC-GGBFS paste with cracked and uncracked specimens. The self-healing of cracked specimens is processes of crack closing with re-hydration of unhydrated in crack surface. The OPC paste with GGBFS replacement ratios of 0%, 10%, 20% and 30% were prepared having a constant water-binder ratios of 0.5. The OPC-GGBFS paste specimens immersed in tap-water and sea-water. The temperature of tap and sea-water was $5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$. The cracked specimens after deterioration were immersed for 60 days. The relationship between self-healing effect and age-effect was calculate based upon the experimental results. The self-healing effect was measured in ultrasonic pulse velocity (UPV) before and after loading. When the relative change rate of UPV is increases with the increase in GGBFS replacement ratios. Moreover, the self-healing effect is increased with the temperature of tap-water is increase. But the cracked specimens immersed in sea-water was unclear effects of different temperature. Furemore, most of the healing for OPC-GGBFS specimens immersed in tap-water and sea-water occurred during the first 30 days. The self-healing effect until 30 days is higher than that the age-effect. After 30 days, self-effect and age-effect was largely decreases. SEM/EDS analysis of crack on the surface of the specimens in tap-water were covered with aragonite, and sea-water were covered with brucite.

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Characteristics of film-type crystal growth mechanism of CO2 hydrate (CO2 하이드레이트의 film형 결정성장 거동에 관한 연구)

  • Lee, Hyunju;Kim, Soomin;Lee, Ju-Dong;Kim, Yangdo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many researches have been carried out to reduce and/or to capture the major global warming gases. Especially, the hydrate formation mechanisms were intensively investigated for carbon dioxide sequestration and storage process applications. In this study, the characteristics of film-type crystal growth mechanism of carbon dioxide hydrate were comprehensively examined. Carbon dioxide hydrate crystal was formed in semi-batch type stir reactor at various pressure conditions while the temperature was fixed to be constant to reduce and minimize the guest gas solubility effects. A supply gas composition was 99.999 % of Carbon dioxide, the observation data was collected by optical microscope adopted CCD camera (Nikon DS-5M/Fi1/2M-U2). This study revealed that the guest gas pressure changes significantly altered the crystal growth mechanism and film growth rate of carbon dioxide hydrate crystal. The critical pressure of the carbon dioxide hydrate of crystal growth mechanism change was found to be 2.0 MPa. The capillary force and gas concentration gradient also significantly changed the film-type crystal growth mechanism of carbon dioxide hydrate crystal.

Studies on the Differentiation of Chondrogenic Cells in Developing Chick Embryo I. Cellular Aggregation and Chondrogenesis (발생계배 연골세포의 분화기구에 대한 연구 I. 세포응집과 분화와의 관계)

  • 박대규;손종경;유정아;유병제;강신성
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.310-321
    • /
    • 1990
  • To establish the in vitro culture system and quantitation for chondrogenesis, and to investigate the relationship between cell aggregation and chondrogenesis, chick limb bud mesenchymal cells of Hamburger-Hamilton stage 23/24 were micromass cultured in various cell densities. The chondrogenesis was assayed based on checking the alcian blue-stained nodule numbers, the amount of alcian blue extraded, the change in cell numbers, the rate of [35 S] sulfate incorporation and expression of type II collagen. Mesenchymal cells plated with an initial density of high (1 x 107 cells/ml)- and intermediates (5. $\times$ 106 cells/ml)-density were differentiated into cartilage. On the other hand, the cells of low density (2 x 106 cells/mi, 5 $\times$ 105 cells/ml) of stage 23/24 cells and the stage 18/19 cells in three kinds of cell density did not differentiate into cartilage even though the cells formed an aggregated core at the center of cultured mass. From these results and others obtained in this study, it can be stated that the stage 23/24 mesenchymal cells are likely to pass over the aggregation step and have the potentiality to differentiate into chondrocytes. Thus chondrogenesis in vitro can be observed when mesenchymal cells are plated over the threshold density of 5 $\times$ 106 cells/ml. Hyaluronidase (HAase) activity was relatively constant throughout the culture, suggesting that the role of HAase may not be important for the cells of stage 23/24.

  • PDF

Financial Projection for National Health Insurance using NHIS Sample Cohort Data Base (국민건강보험 표본코호트 DB를 이용한 건강보험 재정추계)

  • Park, Yousung;Park, Haemin;Kwon, Tae Yeon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.4
    • /
    • pp.663-683
    • /
    • 2015
  • The change of the population pyramid due to low fertility and rapid aging threatens the financial sustainability of National Health Insurance. We construct statistical models for prevalence rates and medical expenses using National Health Insurance Service (NHIS) sample cohort data from 2002-2013. We then project yearly expenditures and income of national health insurance until 2060 that considers various assumptions in regards to future population structure and economic conditions. We adopt a VECM-LC model for prevalence rates and the double exponentially smoothing method for the per capita co-payment of healthcare expense (in which the two models are institution-disease-sex-age specific) to project of national health insurance expenditures. We accommodate various assumptions of economic situations provided by the national assembly and government to produce a financial projection for national health insurance. Two assumptions of dependents ratios are used for the projection of national health insurance income to conduct two future population structures by the two assumptions of aging progresses and various assumptions on economic circumstances as in the expenditure projection. The health care deficit is projected to be 20-30 trillion won by 2030 and 40-70 trillion won by 2060 in 2015 constant price.