• 제목/요약/키워드: constant pressure test

검색결과 391건 처리시간 0.027초

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

고기능성 복합재료의 제조와 그 특성평가에 관한 연구 (A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF

불교란 점성토를 이용한 일정변형률압밀시험의 적용성에 관한 연구 (A Study on the Application of the Constant Rate-of Strain Test Method Using Undisturbed Clay)

  • 김광태;이기세;백영식
    • 한국지반공학회논문집
    • /
    • 제16권5호
    • /
    • pp.93-105
    • /
    • 2000
  • 일정변형률압밀사시험의 효율성 및 적용성을 구체화하기 위해 인공시료 또는 한정된 지역에서 채취한 불교란 점성토 시료가 아닌 광범위한 지역에서 채취한 불교란 점성토 시료에 대해 시험을 실시하였다. 시료채취의 대상지역은 우리나라의 서해안에서 동해안에 이르는 13개 지역이며, 29개의 불교란 자연시료를 채취하여 일정변형률압밀시험을 113회 실시하였다. 또한, 비교하기 위해 표준압밀시험도 병행하였다. 시험결과로부터 얻어진 압밀정수에 대한 공학적 특성을 고찰하였고, 회기분석을 통해 통계식을 제안하였다. 두 시험법에 의해 산출된 압밀정수를 비교 분석한 결과 수압비가 20% 이내인 범위에서는 일정변형률압밀시험의 변형률 속도가 압밀시험의 정수에 미치는 영향은 거의 없는 것으로 나타났다. 압축지수 및 압밀계수는 일정면형률시험의 결과 값이 표준압밀시험의 결과 값보다 크게 산출되었으나 일관성을 보였다. 또한, 선행압밀압력에 있어서는 두 시험법에 Cassagrande의 방법을 적용할 경우 서로 일치하는 것으로 나타났다. 본 연구로부터 일정변형률압밀시험을 사용하여 표준압밀시험에 상용하는 상호관계식 개발의 타당성을 확인할 수 있었다.

  • PDF

댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사 (Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow)

  • 신상묵
    • 대한조선학회논문집
    • /
    • 제55권1호
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

2방향 전자밸브의 PWM 신호에 의한 압력제어 특성 (Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal)

  • 정헌술;김형의
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.

시트 체크밸브를 갖는 압전펌프 설계 및 펌프 실험장치 제작 (Design and Test Rig Construction for Piezoelectric Pump having Sheet Type Check Valve)

  • 함영복;유진산;윤소남;최성대
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1442-1445
    • /
    • 2003
  • In precision machinery industry, it's required with small size and low noise design to using in constant liquid delivery equipment. To accomplish it's purpose, we designed the check valve with rubber sheet of circle shapes as a possible assembly in pump body. The test equipment for piezoelectric pump was able to test pressure-flow property and output property of piezoelectric pump by variation(magnitude of voltage and frequency) of input power.

  • PDF

하트만 방법에 의한 광학면의 기상측정 (On-Machine Measurement of an Optical Surface by Hartmann Test)

  • 김용관;오창진;이응석;김옥현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.474-480
    • /
    • 2002
  • Aspheric optical lenses and mirrors are widely used in recent. It is more difficult to manufacture and measure the aspherical optics compared to conventional spherical ones. The interferometric optical test is common for the measurement of spherical optical surface. But the application of the interferometry to the measurement of aspheric surface is difficult because it needs a precise null corrector and very careful environmental conditions such as keeping constant temperature, humidity, atmospheric pressure and vibrations. To enhance productivity of optics manufacturing on-machine measurement and correction has been developed in this study. For practical applications, robustness of the measurement method to environments is more important. For the purpose an optical OMM(On-Machine Measurement) system has been developed using Shack-Hartmann test which has robustness to the environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by least square fitting. The measured result of the developed only system gives the maximum deviation only in 200 nm from the result measured by a commercial Fizeau interferometer Wyko 6000.

  • PDF

아이스 슬러리의 수송 및 냉열이용에 관한 연구 (A Study on Transport and Heat Utilization of Ice Slurries)

  • 길복임;이윤표;정동주;조봉현;최은수
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기 (Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.1-6
    • /
    • 2004
  • HDPE (high density polyethlyne) 라이너와 금속 boss를 가진 복합재료 압력용기가 필라멘트 와인딩 공정에 의해 개발되었다. 이 용기의 끝 부위는 dome-shape 부위 그리고 용기의 중앙부는 cylinder-shape로 형성되었다. 용기를 구성하는 재료인 HDPE, 수지 그리고 강화섬유와 같은 용기재료에 대해 환경실험이 1년 이상 실행되었다 Boss 설계는 FEM 해석으로 가스 누출을 최대한 방지해 주는 것으로 확인되었다. 실험적인 방법에 의해 가장 이상적인 fiber tension이 얻어졌고, image analyzer에 의해 측정된 섬유의 체적율, $\textrm{V}_{f}$,는 실린더에서 55.4 %, dome part에서 55.6 % 이었다. Winding pattern은 용기의 파괴가 실린더 부위에서 일어나도록 dome 부위의 복합재료 두께조절을 하도록 프로그램 되었다 경화 중 용기는 돌려졌었고 고정 내부압력 0.62 bar를 가함으로서 최종용기의 파괴압력이 28 % 향상되었다. Under-wound, fully wound된 용기의 파괴 및 피로시험결과를 충족하였다.