• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.025 seconds

VLSI Design for Folded Wavelet Transform Processor using Multiple Constant Multiplication (MCM과 폴딩 방식을 적용한 웨이블릿 변환 장치의 VLSI 설계)

  • Kim, Ji-Won;Son, Chang-Hoon;Kim, Song-Ju;Lee, Bae-Ho;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • This paper presents a VLSI design for lifting-based discrete wavelet transform (DWT) 9/7 filter using multiplierless multiple constant multiplication (MCM) architecture. This proposed design is based on the lifting scheme using pattern search for folded architecture. Shift-add operation is adopted to optimize the multiplication process. The conventional serial operations of the lifting data flow can be optimized into parallel ones by employing paralleling and pipelining techniques. This optimized design has simple hardware architecture and requires less computation without performance degradation. Furthermore, hardware utilization reaches 100%, and the number of registers required is significantly reduced. To compare our work with previous methods, we implemented the architecture using Verilog HDL. We also executed simulation based on the logic synthesis using $0.18{\mu}m$ CMOS standard cells. The proposed architecture shows hardware reduction of up to 60.1% and 44.1% respectively at 200 MHz clock compared to previous works. This implementation results indicate that the proposed design performs efficiently in hardware cost, area, and power consumption.

Quantitative Evaluation of the First Order Creatine-Kinase Reaction Rate Constant in in vivo Shunted Ovine Heart Treated with Oxandrolone Using Magnetization Transfer 31P Magnetic Resonance Spectroscopy (MT-31P-MRS) and 1 H/31P Double-Tuned Surface Coil: a Preliminary Study

  • Thapa, Bijaya;Dahl, Marjanna;Kholmovski, Eugene;Burch, Phillip;Frank, Deborah;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Purpose: Children born with single ventricle physiology demonstrate poor growth rate and suffer from malnutrition, which lead to increased morbidity and mortality in this population. We assume that an anabolic steroid, oxandrolone, will promote growth in these infants by improving myocardial energy utilization. The purpose of this paper is to study the efficacy of oxandrolone on myocardial energy consumption in these infants. Materials and Methods: We modeled single ventricle physiology in a lamb by prenatally shunting the aorta to the pulmonary artery and then postnatally, we monitored cardiac energy utilization by quantitatively measuring the first order reaction rate constant, $k_f$ of the creatine-kinase reaction in the heart using magnetization transfer $^{31}P$ magnetic resonance spectroscopy, home built $^1H/^{31}P$ transmit/receive double tuned coil, and transmit/receive switch. We also performed cine MRI to study the structure and dynamic function of the myocardium and the left ventricular chamber. The spectroscopy data were processed using home-developed python software, while cine data were analyzed using Argus software. Results: We quantitatively measured both the first order reaction rate constant and ejection fraction in the control, shunted, and the oxandrolone-treated lambs. Both $k_f$ and ejection fraction were found to be more significantly reduced in the shunted lambs compared to the control lambs, and they are increased in oxandrolone-treated lambs. Conclusion: Some improvement was observed in both the first order reaction rate constant and ejection fraction for the lamb treated with oxandrolone in our preliminary study.

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • 이석형;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.167-272
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films havc been of interest due to their lower dielectric constant and compatibility with existing process tools. However, instability issues related to hond and increasing dielectric constant due to water absorption when the SiOF film was exposured to atmospheric ambient. Therefore, the purpose nf this research is to study the effect of post oxygen plasma treatment on the resistance of nioisture absorption and reliability of SiOF film. Improvement of moisture ahsorption resistance of SiOF film is due to the forming of thin $SiO_2$ layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the numher of Si-F honds that tend to associate with OH honds. However, the dielectric constant was inucased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and $300^{\circ}C$ of substrate temperature.

  • PDF

Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System (정압식 압축공기저장(CAES) 발전 시스템 에너지 분석)

  • Kim, Young-Min;Lee, Sun-Youp;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-184
    • /
    • 2011
  • Compressed Air Energy Storage (CAES) is a combination of energy storage and generation by storing compressed air using off-peak power for generation at times of peak demand. In general, both charging and discharging of high-pressure vessel are unsteady processes, where the pressure is varying. These varying conditions result in low efficiencies of compression and expansion. In this paper, a new constant-pressure CAES system to overcome the current problem is proposed. An energy analysis of the system based on the concept of exergy was performed to evaluate the energy density and efficiency of the system in comparison with the conventional CAES system. The new constant-pressure CAES system combined with pumped hydro storage requires the smaller cavern with only half of the storage volume for variable-pressure CAES and has a higher efficiency of system.

Performance Analysis of Maximum Zero-Error Probability Algorithm for Blind Equalization in Impulsive Noise Channels (충격성 잡음 채널의 블라인드 등화를 위한 최대 영-확률 알고리듬에 대한 성능 분석)

  • Kim, Nam-Yong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • This paper presentsthe performance study of blind equalizer algorithms for impulsive-noise environments based on Gaussian kernel and constant modulus error(CME). Constant modulus algorithm(CMA) based on CME and mean squared error(MSE) criterion fails in impulsive noise environment. Correntropy blind method recently introduced for impulsive-noise resistance has shown in PAM system not very satisfying results. It is revealed in theoretical and simulation analysis that the maximization of zero-error probability based on CME(MZEP-CME) originally proposed for Gaussian noise environments produces superior performance in impulsive noise channels as well. Gaussian kernel of MZEP-CME has a strong effect of becoming insensitive to the large differences between the power of impulse-infected outputs and the constant modulus value.

Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack (환경피로균열 열화특성 예측을 위한 확률론적 접근)

  • Lee, Taehyun;Yoon, Jae Young;Ryu, KyungHa;Park, Jong Won
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.

Development of Hybrid AVR for Alternator (교류 발전기용 하이브리드 자동 전압 조정기 개발)

  • Yang, Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.182-188
    • /
    • 2015
  • An analog AVR has an advantage of short time constant, time to revert again from the abnormal state to a stable one depending on the voltage fluctuations of the load. But the Analog AVR has a disadvantage of large voltage variation according to the load fluctuation. Voltage regulation for digital AVR is very stable, but the time constant is very long compared to that of an analog AVR. Therefore, it indicates that the digital AVR shows unstable output performance in a very large load variations. In this paper, a mixed form of an analog AVR and a digital AVR is proposed. An implemented hybrid AVR has fast time constant and stable voltage regulation capability. Hybrid AVR voltage variations in the load is stable within 1[%] and the voltage stability is also improved. It also showed fast time constant to the level of the analog AVR. Thus hybrid AVR developed in this paper can be used as a power supply for a variety of uses in industry.

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

Dynamic Analysis to Select Main Parts of Four-Axis Palletizing Robots (4축 이적재 로봇의 주요 부품 선정을 위한 동적 해석)

  • Park, Il-Hwan;Jeon, Yong-Jae;Go, A-Ra;Seol, Sang-Seok;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.62-69
    • /
    • 2020
  • The demand for industrial robots is proliferating with production automation. Industrial robots are used in various fields, such as logistics, welding, and assembly. Generally, six degrees of freedom are required to move freely in space. However, the palletizing robot used for material management and logistics systems typically has four degrees of freedom. In designing such robots, their main parts, such as motors and reducers, need to be adequately selected while satisfying payload requirements and speed. Hence, this study proposes a practical method for selecting the major parts based on dynamic analysis using ADAMS. First, the acceleration torques for the robot motion were found from the analysis, and then the friction torques were evaluated. This study introduces a constant-speed torque constant instead of friction coefficient. The RMS torque and maximum power of each motor were found considering the above torques. After that, this study recommends the major specifications of all motors and reducers. The proposed method was applied to a palletizing robot to verify the suitability of the pre-selected main parts. The verification result shows that the proposed method can be successfully applied to the early design stage of industrial robots.

Effect of a Multi-phase Screen in a Laser-beam-propagation Model Under Atmospheric Fluctuations (대기 요동 환경에서의 레이저빔 전파 모델에서 다수 위상판의 효과)

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.143-149
    • /
    • 2024
  • We analyze the effect of atmospheric fluctuation on laser beam propagation, using a single-phase screen model and a multi-phase screen model. When a laser beam (wavelength 1064 nm, radius 10 mm, collimated by 25.4 mm optics) propagates 3 km, atmospheric fluctuation with structure constant Cn2 in the range of 10-17 to 10-14 is generated by the single- and multi-phase screen models. The results of short-term and long-term exposures are analyzed in terms of the beam profile, power in the bucket, and beam radius at the receiver plane. The power in the bucket and beam radius increase as the structure constant increases. When the structure constant is less than 2×10-15, the results of the single- and multi-phase screen models are similar, within a difference of 1.5 %. However, when the structure constant is greater than 2×10-15, the difference between the two models increases, and the multi-phase screen model is appropriate under this condition.