• Title/Summary/Keyword: constant normal stress condition

Search Result 34, Processing Time 0.025 seconds

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Numerical analysis on heat transfer due to buoyancy force of viscoelastic fluid (점탄성 유체의 부력에 의한 열전달 수치해석)

  • Ahn S. T.;Sohn C. H.;Shin S. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 1999
  • The present study investigates flow character and heat transfer behaviors of viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. An axially-constant heat flux on bottom wall and peripherally constant temperature boundary condition(H1) was adopted. The Reiner-Rivlin fluid model is used as the normal stress model for the viscoelastic fluid and temperature-dependent viscosity model is adopted. The present results show a signifiant change of the main flow field which causes a large heat transfer enhancement. This phenomena can be explained by the combined effect of buoyancy, temperature-dependent viscosity and viscoelastic property on the flow.

  • PDF

The Shear Characteristics of Unsaturated Sandy Soils (불포화 사질토의 전단특성)

  • Lim, Seong-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.57-64
    • /
    • 2007
  • Since matric suction of unsaturated soil was related to soil and ground water contaminations, it is very important to analyze its mechanism that was represented by shear characteristics. In three phases of soil, a little air makes the condition of unsaturated soil on contract or shrinkage surface between water and air. Capillarity and suction in pore of unsaturated soil cause surface tension and surface force so it makes negative pore water pressure and increases effective stress as a result. Therefore, negative pore water pressure in partially saturated soil affects the soil structure and degree of saturation and it is important to evaluate accurately unsaturate flow and behavior. In this study, the shear strength characteristics of the seven sandy soils were investigated using consolidated drained triaxial tests with special emphasis on the effects of the negative pore pressure and the matric suction. These tests involved shearing under either a constant net confining pressure and varying matric suction or under a constant matric suction and varying net normal stress.

Analysis of the stress distribution under a driving lugged wheel by photoelastic method (광탄성법(光彈性法)에 의(依)한 러그달린 구동륜하(駆動輪下)의 응력분포(應力分布)에 관(關)한 해석(解析))

  • Kim, Jin Hyun;Choi, Sang In
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.11-17
    • /
    • 1983
  • Stress distribution under a driving lugged wheel was obtained by photoelastic method. The distribution showed two distinct parts, one part is due to sinkage and other due to compression. Results of the study are summarized as follows. 1. The tangential reactions of sinkage as well as compressing parts were directly proportional to tangential load to the driving wheel, that's appeared to be thrust of the driving wheel. The normal reactions of both sinkage and compressing parts were directly proportional to the vertical load to the driving wheel, that's appeared to be resistance against wheel motion. 2. When the tangential load was constant, changing the vertical load did not show any significant thrust variation of the driving wheel. 3. Under the condition of this experiment, the ratio of vertical load to tangential load (T.L/V.L) must be greater than 1.0 in order for the wheel to roll.

  • PDF

Analysis of Accelerated Life Tests with Intrinsic and Extrinsic Failure Modes (내부고장요인과 외부고장요인이 있는 제품에 대한 가속수명 시험의 분석)

  • Kim, C. M.;D. S, Bai
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.381-384
    • /
    • 2000
  • This paper proposes a method of estimating the lifetime distribution at use condition for constant stress accelerated lift tests when extrinsic failure mode as well as intrinsic one exists. A mixture of two log-normal distributions is introduced to describe these failure modes and it is assumed that a linear relation exists between the location parameter and stress. An estimation procedure using the expectation and maximization algorithm is proposed and a numerical example is given.

  • PDF

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Response of Ascorbate Peroxidase and Dehydroascorbate Reductase in Lettuce (Lactuca sativa L.) Leaves Exposed to Cold Stress (저온 처리한 상추의 잎 내에서 ascorbate peroxidase와 dehydroascorbate reductase의 반응)

  • Kang, Sang-Jae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1705-1711
    • /
    • 2008
  • To investigate the relationship between cold stress and the activity of ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR), mRNA expression level of two enzymes, hydrogen peroxide content was studied in lettuce leaves under stress condition imposed by cold stress at $4^{\circ}C$ for 24 hr in the dark and following recovery at $20^{\circ}C$ from cold stress. Hydrogen peroxide content increased gradually in lettuce leaves during cold stress, but decreased slightly following recovery from cold stress. Soluble protein content, however, decreased gradually during cold stress, and then rapidly returned to normal levels following recovery. Total chlorophyll content decreased gradually during cold stress, and then keep constant following recovery. The patterns of chlorophyll a and b content similar to that of total chlorophyll content, and carotenoid content didn't change. The ratio of chlorophyll a and total chlorophyll was increased during cold stress, but decreased with rapid during cold stress, and then the ratio returned to normal levels following recovery. During cold stress, the activity of APX and DHAR in the lettuce leaves increased dramatically, and also transcript levels of mRNA of APX and DHAR, as determined by probing 32P-labeled single stranded RNA of APX and DHAR, highly increased and returned to normal levels following recovery, respectively. Relationship between APX and DHAR activity and hydrogen peroxide highly related ($R^2$=0.8715 and 0.8643), whereas between hydrogen peroxide and total chlorophyll content and soluble content related reversely ($R^2$=0.5021 and 0.8915).

The Effect of Matrix of Compact Vermicular Graphite Cast Iron on Machinability in Lathe Turning (CV 흑연주철의 기지조직변화가 절삭성에 미치는 영향)

  • An, Sang-Ook;Park, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-62
    • /
    • 1988
  • An experimental investigation of the machining characteristics of compact vermicular cast iron whose matrix were formulated under two kinds of annealing conditions has been conducted. The various characteristics of the machinability of CA cast iron depending upon its matrix and cutting condition have been obtained from the experiment. The results are as follow. As depth of cut increases, the shear stress slightly decreases in order $P_1, \P_2, \P_3$ which are classified by ferrite matrix of CV cast iron. As depth of cut increases, the normal stress increases, and annealing effect in heavy cutting is smaller than that in light cutting. The cutting energy slightly decreases, as depth of cut increases and the effect of annealing on cutting energy in light cutting is higher than that in heavy cutting. The cutting equation in this study are as follow. $P_1\:\2{\phi}\ + \1.49({\beta} - {\alpha} )=84^{\circ}$ $P_2\:\2{\phi}\ + \1.36({\beta} - {\alpha} )=82^{\circ}$ $P_3\:\2{\phi}\ + \1.34({\beta} - {\alpha} )=79^{\circ}$ Machining constants in this study for $P_1, P_2, P_3$give $74^{\circ} , 66^{\circ}, 61^{\circ}$ Tool wear increases as depth of cut increases, and decreases as ferrit matrix increases.

  • PDF

The Role of the Plastic Flow Rules in the Elasto-Plastic Formulation of Joint behaviour (절리거동의 탄소성해석에서 소성유동법칙의 역할)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 2000
  • The influence of the plastic flow rules on the elasto-plastic behaviour of a discrete joint element was investigated by performing the numerical direct shear tests under both constant normal displacement and normal displacement conditions. The finite interface elements obeying Plesha’s joint constitutive law was used to allow the relative motion of the rock blocks on the joint surface. Realistic results were obtained in the tests adopting the non-associated flow rule, while the associated flow rule overestimated the joint dilation. To overcome the computational drawbacks coming from the non-symmetric element stiffness matrix in the conventional non-associated plasticity, the symmetric formulation of the tangential stiffness matrix for a non-associated joint element was proposed. The symmetric elasto-plastic matrix it derived by assuming an imaginary equivalent joint with associated flow rule which shows the same plastic response as that of original Joint with non-associated flow rule. The validity of the formulation was confirmed through the numerical direct shear tests under constant normal stress condition.

  • PDF