• Title/Summary/Keyword: constant composition code

Search Result 3, Processing Time 0.016 seconds

SOME NEW CLASSES OF ZERO-DIFFERENCE BALANCED FUNCTIONS AND RELATED CONSTANT COMPOSITION CODES

  • Sankhadip, Roy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1327-1337
    • /
    • 2022
  • Zero-difference balanced (ZDB) functions can be applied to many areas like optimal constant composition codes, optimal frequency hopping sequences etc. Moreover, it has been shown that the image set of some ZDB functions is a regular partial difference set, and hence provides strongly regular graphs. Besides, perfect nonlinear functions are zero-difference balanced functions. However, the converse is not true in general. In this paper, we use the decomposition of cyclotomic polynomials into irreducible factors over 𝔽p, where p is an odd prime to generalize some recent results on ZDB functions. Also we extend a result introduced by Claude et al. [3] regarding zero-difference-p-balanced functions over 𝔽pn. Eventually, we use these results to construct some optimal constant composition codes.

ON GENERALIZED ZERO-DIFFERENCE BALANCED FUNCTIONS

  • Jiang, Lin;Liao, Qunying
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.41-52
    • /
    • 2016
  • In the present paper, by generalizing the definition of the zero-difference balanced (ZDB) function to be the G-ZDB function, several classes of G-ZDB functions are constructed based on properties of cyclotomic numbers. Furthermore, some special constant composition codes are obtained directly from G-ZDB functions.

The Optimization of AC-PDP Cell by 2D Simulations

  • Kim, Woong;Y.K. Shin;C.H. Shon;J.H. Kang;Park, J.S.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.227-227
    • /
    • 1999
  • Plasma display panel(PDP) is a leading technology for large-area flat panel displays. A current issue in operating the PDP cell is that the efficiency of the PDP cell is very low. To increase the efficiency of the PDP cell, the visible light needs to be maximized and the power consumption minimized. Since the excited xenons are related to the production of the visible light, it is important to optimize the cell geometry and the gas composition that produce the excited xenons more efficiently. A 2D-fluid code (FL2P) is developed and used to simulate the plasma dynamics and the radiation transport in the PDP cell. The cell is optimized with the code for various operating conditions and cell dimensions such as the voltage pulse, electrode length, electrode spacing, gap size, dielectric constant, gas mixture ratio, pressure, and pulse duration.

  • PDF