Acknowledgement
I would like to thank my advisor Professor Robert Fitzgerald (retired) from department of mathematics, Southern Illinois University, Carbondale, USA for his valuable advice leading to writing this paper.
References
- G. T. Bogdanova and S. N. Kapralov, Enumeration of optimal ternary constantcomposition codes, Probl. Inf. Transm. 39 (2003), no. 4, 346-351; translated from Problemy Peredachi Informatsii 39 (2003), no. 4, 35-40. https://doi.org/10.1023/B:PRIT.0000011273.98799.a8
- H. Cai, X. Zeng, T. Helleseth, X. Tang, and Y. Yang, A new construction of zerodifference balanced functions and its applications, IEEE Trans. Inform. Theory 59 (2013), no. 8, 5008-5015. https://doi.org/10.1109/TIT.2013.2255114
- C. Carlet, G. Gong, and Y. Tan, Quadratic zero-difference balanced functions, APN functions and strongly regular graphs, Des. Codes Cryptogr. 78 (2016), no. 3, 629-654. https://doi.org/10.1007/s10623-014-0022-x
- Y. M. Chee, A. C. H. Ling, S. Ling, and H. Shen, The PBD-closure of constantcomposition codes, IEEE Trans. Inform. Theory 53 (2007), no. 8, 2685-2692. https://doi.org/10.1109/TIT.2007.901175
- W. Chu, C. J. Colbourn, and P. Dukes, Tables for constant composition codes, J. Combin. Math. Combin. Comput. 54 (2005), 57-65.
- W. Chu, C. J. Colbourn, and P. Dukes, On constant composition codes, Discrete Appl. Math. 154 (2006), no. 6, 912-929. https://doi.org/10.1016/j.dam.2005.09.009
- C. J. Colbourn, T. Klove, and A. C. H. Ling, Permutation arrays for powerline communication and mutually orthogonal Latin squares, IEEE Trans. Inform. Theory 50 (2004), no. 6, 1289-1291. https://doi.org/10.1109/TIT.2004.828150
- C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inform. Theory 54 (2008), no. 12, 5766-5770. https://doi.org/10.1109/TIT.2008.2006420
- C. Ding, Optimal and perfect difference systems of sets, J. Combin. Theory Ser. A 116 (2009), no. 1, 109-119. https://doi.org/10.1016/j.jcta.2008.05.007
- C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory Pract. 6 (2012), no. 1, 3-19. https://doi.org/10.1080/15598608.2012.647479
- C. Ding, Q. Wang, and M. Xiong, Three new families of zero-difference balanced functions with applications, IEEE Trans. Inform. Theory 60 (2014), no. 4, 2407-2413. https://doi.org/10.1109/TIT.2014.2306821
- C. Ding and J. Yin, Algebraic constructions of constant composition codes, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1585-1589. https://doi.org/10.1109/TIT.2005.844087
- C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inform. Theory 51 (2005), no. 10, 3671-3674. https://doi.org/10.1109/TIT.2005.855612
- L. Jiang and Q. Liao, Generalized zero-difference balanced functions and their applications, Chinese J. Contemp. Math. 37 (2016), no. 3, 201-216; translated from Chinese Ann. Math. Ser. A 37 (2016), no. 3, 243-260.
- L. Jiang and Q. Liao, On generalized zero-difference balanced functions, Commun. Korean Math. Soc. 31 (2016), no. 1, 41-52. https://doi.org/10.4134/CKMS.2016.31.1.041
- J. Knauer and J. Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005), no. 251, 1559-1563. https://doi.org/10.1090/S0025-5718-05-01723-0
- R. Lidl and H. Niederreiter, Finite fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
- H. Liu and Q. Liao, Some new constructions for generalized zero-difference balanced functions, Internat. J. Found. Comput. Sci. 27 (2016), no. 8, 897-908. https://doi.org/10.1142/S0129054116500362
- Y. Luo, F. Fu, A. J. H. Vinck, and W. Chen, On constant-composition codes over Zq, IEEE Trans. Inform. Theory 49 (2003), no. 11, 3010-3016. https://doi.org/10.1109/TIT.2003.819339
- W. Meidl and A. Topuzo˘glu, Quadratic functions with prescribed spectra, Des. Codes Cryptogr. 66 (2013), no. 1-3, 257-273. https://doi.org/10.1007/s10623-012-9690-6
- V. Pless, Introduction to the Theory of Error-Correcting Codes, second edition, WileyInterscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1989.
- L.-Z. Shen, J.-J. Wen, and F.-W. Fu, A new class of zero-difference balanced functions, Inform. Process. Lett. 136 (2018), 9-11. https://doi.org/10.1016/j.ipl.2018.03.011
- Z. Yi, Z. Lin, and L. Ke, A generic method to construct zero-difference balanced functions, Cryptogr. Commun. 10 (2018), no. 4, 591-609. https://doi.org/10.1007/12095-017-0247-4
- Z. Zha and L. Hu, Cyclotomic constructions of zero-difference balanced functions with applications, IEEE Trans. Inform. Theory 61 (2015), no. 3, 1491-1495. https://doi.org/10.1109/TIT.2014.2388231
- Z. Zhou, X. Tang, D. Wu, and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inform. Theory 58 (2012), no. 1, 139-145. https://doi.org/10.1109/TIT.2011.2171418