• 제목/요약/키워드: consistent least-squares problems

검색결과 3건 처리시간 0.021초

A FAST KACZMARZ-KOVARIK ALGORITHM FOR CONSISTENT LEAST-SQUARES PROBLEMS

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.9-26
    • /
    • 2001
  • In some previous papers the author extended two algorithms proposed by Z. Kovarik for approximate orthogonalization of a finite set of linearly independent vectors from a Hibert space, to the case when the vectors are rows (not necessary linearly independent) of an arbitrary rectangular matrix. In this paper we describe combinations between these two methods and the classical Kaczmarz’s iteration. We prove that, in the case of a consistent least-squares problem, the new algorithms so obtained converge ti any of its solutions (depending on the initial approximation). The numerical experiments described in the last section of the paper on a problem obtained after the discretization of a first kind integral equation ilustrate the fast convergence of the new algorithms. AMS Mathematics Subject Classification : 65F10, 65F20.

시스템동정의 ALS법에 관한 연구 (A Study on the ALS Method of System Identification)

  • 이동철
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.74-81
    • /
    • 2003
  • A system identification is to estimate the mathematical model on the base of input output data and to measure the output in the presence of adequate input for the controlled system. In the traditional system control field, most identification problems have been thought as estimating the unknown modeling parameters on the assumption that the model structures are fixed. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input output case with the observed noise. We suggest the adjusted least squares method as a consistent estimation method in the system identification in the case where there is observed noise only in the output. In this paper the adjusted least squares method has been developed from the least squares method and the efficiency of the estimating results was confirmed by the generating data with the computer simulations.

  • PDF

반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법 (A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods)

  • ;신상문
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.