• 제목/요약/키워드: conservation of mass

Search Result 524, Processing Time 0.027 seconds

An Experimental Study on the Drying Characteristics of Automotive Paint Using Heating Panels and Hot Air (가열패널과 열풍을 이용한 자동차용 도료의 건조특성에 관한 실험적 연구)

  • Kim, Sung-Il;Park, Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.828-836
    • /
    • 2010
  • The drying is a process that involves coupled and simultaneous heat and mass transfer. When a wet solid is subjected to thermal drying, two processes occur simultaneously. Drying is classified according to heat transfer characteristics in terms of conduction, convection and radiation. In thermal drying, radiation is easier to control than conduction and convection drying and involves a relatively simple structure. In this study, we measured energy consumption, surface hardness of paint and surface gloss with variation of surface temperature of drying materials and drying time. Drying characteristics and energy consumption between heating panels and hot air heating have been presented. The present study shows that a dryer using heating panels is more effective than a hot air dryer from the viewpoint of energy conservation. The hot air dryer, however, was not optimized and more studies on various parameters related to drying will need to be investigated for definite comparison of drying characteristics of the dryers. The result, even if limited, would present the effective availability of paint drying.

Characteristics of a Warm Eddy Observed in the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.283-296
    • /
    • 2009
  • Oceanographic survey data were analyzed to understand the characteristics of a warm eddy observed in the Ulleung Basin in July 2005. The temperature distribution at 200 db and vertical sections provided evidence of the warm eddy in the Ulleung Basin (UWE05). Based on the 5$^{\circ}C$ isothermal line on 200 db temperature, the major axis was 160 km from southwest to northeast, and the minor axis was 80 km from southeast to northwest. The homogeneous layer in the thermocline of UWE05 had mean values of 10.40$^{\circ}C$ potential temperature, 34.35 psu salinity, and 26.37 kg/m$^3$ potential density (${\sigma}_{\theta}$) and provided evidence that UWE05 also existed during the winter of 2004-2005. A warm streamer initially flowed along the circumference of UWE05 and mixed with the upper central water. Two northward current cores were found on the western side of the measured current section at the central latitude of UWE05. One was the East Korean Warm Current (EKWC) and the other was the main stream of the western part of UWE05. Geostrophic transport of the upper layer (from the surface to the isopycnal surface of 26.9 ${\sigma}_{\theta}$) was approximately 2.5 Sv in the eastern side of UWE05. However, the measured transport was twice as large as the geostrophic transport. Mass conservation of geostrophic transport was well satisfied in the upper layer. The direct current measurements and geostrophic transport analysis showed that the EKWC meandered around UWE05.

Droplet Vaporization in High Pressure Environments with Pressure Oscillations (강한 압력 교란에 구속된 고압 액적의 천이 기화)

  • 김성엽;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

  • Pilehvar, Ali Farsoon;Esteki, Mohammad Hossein;Hedayat, Afshin;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.654-664
    • /
    • 2018
  • Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established.

Development of a Natural Ventilation Model in a Single Zone Building with Large Openings (큰 개구부를 가진 단일구획 빌딩에서의 자연환기 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.359-369
    • /
    • 2018
  • A model has been developed to predict natural ventilation in a single zone building with large openings. This study first presents pressure-based equations on natural ventilation, that include the combined effect of wind and thermal buoyancy. Moreover, the concept of neutral pressure level(NPL) is introduced to consider the two-way flow through a large opening. The total pressure differences across the opening and the NPL are calculated, and nonlinear equations are solved to find the zonal pressure to satisfy mass conservation. For this analysis, an iterative technique of successively approximating the zonal pressure is used. The results of applying this study model to several simple cases are as follows. When there is no wind and only the stack effect is caused, a one-way flow occurs in both the top and bottom openings in the case of two openings of equal-area, and a one-way flow occurs in the top opening; however, a two-way flow occurs in the bottom opening in the case of two openings of unequal-area. When there is a wind effect, regardless of whether the outside air temperature is lower or higher than the indoor air temperature, air flows into the room through the bottom opening and out of the room through the top opening. As the wind velocity increases, the wind effect appears to be more influential than the stack effect owing to the temperature difference.

RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING (광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.

Development of a Theoretical Model for Predicting Contaminant Concentrations in a Multi-zone Work Environment (다구획 작업환경에서의 오염농도 예측을 위한 이론적 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • To predict contaminant concentrations within a multi-zone work environment, an air quality model in the work environment was developed. To do this, airflow equations on the basis of orifice equation were solved by using the Conte and De Boor scheme, and then equations for the conservation of mass on contaminant were solved by using the fourth-order Runge-Kutta algorithm. To validate the accuracy of simulated results, this model was applied to the controlled environment chamber that had been tested in 1998 by Chung KC. The comparison of predicted concentrations by this study with measured concentrations by the Chung KC indicated that the average deviations were 2.66, 3.35, and 3.15% for zone 1, zone 2, and zone 3, respectively. Also, this model was applied to a working plant with four zones. Thus, the results of contaminant concentration versus time were predicted according to the schedule of the openings operation, and case studies were done for four cases of the openings operation to investigate the interaction of airflow and contaminant concentration. The results indicated that opening operation schedules had a significant effect on contaminant removal efficiency. Therefore, this model might be able to apply for the design of ventilation schedules to control contaminants optimally.

Plant Regeneration from Callus and Adventitious Root Segments of Pulsatilla Koreana Nakai

  • Jung, Su-Jin;Jeong, Jae-Hun;Yoon, Eui-Soo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Plant regeneration of Pulsatilla koreana was achieved via adventitious shoot formation indirectly from callus and directly from adventitious root segments. For the callus induction from leaf or petiole explants, combination of 2,4- dichlorophenoxyaceticacid (2,4-D) with $2.22\;{\mu}M$ 6-benzyladenine (BA) was effective. Adventitious shoot induction from callus was enhanced by the combined treatment with $0.1\;{\mu}M$ polyvinylpyrrolidone (PVP) compared to cytokinin treatment alone. Adventitious roots were induced from the petiole segments on 1/2 MS medium with $4.93\;{\mu}M$ IBA. High frequency direct adventitious shoot formation from the segments of adventitious roots was achieved on medium with $4.92\;{\mu}M$ 2-isopentenyladenine (2-ip). Elongated shoots were rooted on half-strength MS medium containing $5.71\;{\mu}M$ indole acetic acid (IAA). Regenerated plantlets with well-developed shoots and roots were successfully transferred to soil. This in vitro propagation protocol might be useful for mass propagation as well as conservation of this plant.

A Numerical Study of Autoignition in a Confined Cylindrical Spray Combustor (밀폐된 원통형 분무 연소기내의 자연발화 현상에 관한 수치적 연구)

  • Choi, Ji Hun;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.778-787
    • /
    • 1999
  • In this study, the autoignition process of liquid fuel, injected into hot and stagnant air in a 2-D axisymmetric confined cylindrical combustor, has been investigated. Eulerian-Lagrangian scheme was adopted to analyze the two-phase flow and combustion. The unsteady conservation equations were used to solve the transition of the gas field. Interactions between two phases were accounted by using the particle source in cell (PSI-Cell) model, which was used for detailed consideration of the finite rates of transports between phases. And infinite conduction model was adopted for the vaporization of droplets. The results have shown that the process of the autoignition consists of heating up of droplets, vaporization, mixing and ignition. The ignition criteria could be determined by the temporal variations of temperature, reaction rate and species mass fraction. And the effects of various parameters on ignition phenomena are examined. These have shown that the increasing the reaction rate and/or the vaporization rate can reduce the ignition delay time.

A CHARACTERISTICS-BASED IMPLICIT FINITE-DIFFERENCE SCHEME FOR THE ANALYSIS OF INSTABILITY IN WATER COOLED REACTORS

  • Dutta, Goutam;Doshi, Jagdeep B.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.477-488
    • /
    • 2008
  • The objective of the paper is to analyze the thermally induced density wave oscillations in water cooled boiling water reactors. A transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain. A two-phase flow was simulated with a one-dimensional homogeneous equilibrium model. The model treats the boundary conditions naturally and takes into account the compressibility effect of the two-phase flow. The axial variation of the heat flux profile can also be handled with the model. Unlike the method of characteristics analysis, the present numerical model is computationally inexpensive in terms of time and works in a Eulerian coordinate system without the loss of accuracy. The model was validated against available benchmarks. The model was extended for the purpose of studying the flow-induced density wave oscillations in forced circulation and natural circulation boiling water reactors. Various parametric studies were undertaken to evaluate the model's performance under different operating conditions. Marginal stability boundaries were drawn for type-I and type-II instabilities in a dimensionless parameter space. The significance of adiabatic riser sections in different boiling reactors was analyzed in detail. The effect of the axial heat flux profile was also investigated for different boiling reactors.