• Title/Summary/Keyword: conservation of mass

Search Result 519, Processing Time 0.034 seconds

A Study on Combustion Modeling of Nitramine Solid-Propellant (니트라민계 고체추진제의 연소현상에 대한 연구)

  • Yoon, Jae-Kun;Yang, Vigor
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.89-92
    • /
    • 2004
  • This work describes a model development and numerical simulation of detailed combustion mechanisms of RDX/GAP/BTIN propellants. The analysis is based on the conservation equations of mass, energy, and species concentrations for both the condensed and gas phases, and takes into account finite-rate chemical kinetics and variable thermophysical properties. The model has been applied to study the combustion wave structures and burning characteristics of RDX/GAP/BTIN propellants over a broad range of pressures. Reasonably good agreement is achieved between the calculated and measured burning rate at atmospheric pressure. But the model calculation does not result in dark zone experimentally observed.

  • PDF

A Study on the Numerical Models of Wave induced Currents (파랑에 의한 연안류의 수치모델에 관한 연구)

  • Lee, Jung-Maan;Kim, Jae-Joong;Park, Jung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.75-85
    • /
    • 1998
  • A finite difference model for predicting time-dependent, wave-induced nearshore current is studied. The model includes wave refraction, wave-current interaction, bottom friction and wind effect. This model iteratively solved the linear the linear set of conservation of both mass and momentum, which were time averaged (over one wave period) and depth integrated, for mean velocities and free surface displacement. Numerical simulations of nearshore current under oblique wave attack, and for wave and wind induced current on a longshore periodic beach are carried out. Longshore velocities tend to zero in some distances outside the breaker line. And the peak velocity is shifted shoreward at the breaker line. The results represent the general characteristics of the nearshore current induced by wave.

  • PDF

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

A Numerical Study of Smoke Movement by Fire In Atrium Space (화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 -)

  • 노재성;유홍선;정연태
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics (분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

On Using the Eddy Covariance Method to Study the Interaction between Agro-Forest Ecosystems and the Atmosphere (농림생태계와 대기간의 상호 작용 연구를 위한 에디 공분산 방법의 사용에 관하여)

  • Choi Taejin;Kim Joon;Yun Jin-il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • The micrometeorological tower flux network is the cornerstone of the global terrestrial vegetation monitoring. The eddy covariance technique used for tower fluxes is derived from the conservation of mass and is most applicable for steady-state conditions over flat, extended, and uniform vegetation. This technique allows us to obtain surface fluxes of energy budget components, greenhouse and trace gases, and other pollutants. The quality-controlled flux data are invaluable to validate various models with temporal scales ranging from minutes to years and spatial scales ranging from a few meters to hundreds of kilometers. In this paper, we review the theoretical background of this important eddy covariance technique, examine the measurement criteria and corrections, and finally suggest some measurement strategies that may facilitate coordinated flux measurements among different disciplines and provide a strong infrastructure for the global flux network.

  • PDF

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF