• 제목/요약/키워드: connection rotation capacity

검색결과 81건 처리시간 0.027초

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계 (Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity)

  • 안재권;이철호
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.715-723
    • /
    • 2007
  • 본 연구에서는 중/저층의 철골모멘트골조를 대상으로 합리적이고 실용적인 변위기반 내진설계절차를 제시하였다. 현행의 내진설계에서는 구조시스템 종별에 따라 경험적이고 획일적으로 규정된 반응수정계수를 토대로 설계가 수행되므로, 접합부가 보유한 회전능력의 적정성 여부를 검증하기가 어렵다. 본 논문에서는 실험적으로 입증된 철골모멘트골조 접합부의 가용 소성회전능력을 주요설계변수로 직접 사용하는 새로운 설계법을 제시하였다. 이 설계방안의 정립을 위해, 우선 지금까지 불분명한 관계로 남아있던 접합부의 가용 소성회전능력과 반응수정계수 사이의 관계를 합리적이고 정량적으로 정의하는 방안을 제시하였다. 이를 토대로 변위에 기반한 단계별 내진설계절차를 제시하고 비선형동적해석에 의해 방안의 타당성을 입증하였다.

Seismic Performance of High-Rise Intermediate Steel Moment Frames according to Rotation Capacities of Moment Connections

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.45-55
    • /
    • 2015
  • The rotation capacity of the moment connections could significantly influence on the seismic performance of steel moment resisting frames. Current seismic provisions require that beam-to-column connections in Intermediate Moment Frames (IMF) should have a drift capacity as large as 0.02 radian. The objective of this study was to evaluate the effect of the rotation capacity of moment connections on the seismic performance of high-rise IMFs. For this purpose, thirty- and forty-story high-rise IMFs were designed according to the current seismic design provisions. The seismic performance of designed model frames was evaluated according to FEMA P695. This study showed that the forty-story IMF satisfied the seismic performance objective specified in FEMA P695 when the rotation capacity of the connections was larger than 0.02. However, thirty-story IMFs satisfied the performance objective when the connection rotation capacity is larger than 0.03.

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Connection rotation requirements on FRP-strengthened steel-concrete composite beam systems

  • Panagiotis M. Stylianidis;Michael F. Petrou
    • Structural Engineering and Mechanics
    • /
    • 제92권2호
    • /
    • pp.133-147
    • /
    • 2024
  • Composite beams of steel and concrete strengthened with fiber-reinforced polymers (FRP) may exhibit considerably enhanced flexural behaviour, but the combination of three materials with different characteristics and the various possible failure mechanisms that may govern performance make their analysis quite demanding. Previous studies provided significant insights into this problem and several methods were proposed for calculating flexural stiffness and strength, but these studies are restricted to the single member level of a simply supported composite beam section. However, the problem considerably changes when the beam is part of a frame system due to the degree of continuity provided by the surrounding structure, which represents the most common situation in practice. This paper explores the behaviour of semi-continuous FRP-strengthened composite beams, by considering the response characteristics of their end connections and their effects on overall performance. A novel analytical model is derived, which enables a step-by-step representation of the nonlinear relationship between an incremental mid-span design bending moment and corresponding connection rotations. After verification against finite element analyses, a parametric study is conducted which shows that the substantially increased bending moment resistance of FRP-strengthened composite beams can hardly be fully utilized due to a deficiency of corresponding large deformation capacity available in the connections. The extent to which the presence FRP strengthening can be exploited to enhance the beam flexural response depends on the interplay between various structural parameters, including the connection rotation capacity, the beam span, and the FRP modulus of elasticity and ultimate strength.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발 (Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development)

  • 이경구
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.617-624
    • /
    • 2008
  • 잘 설계된 철골 모멘트 접합부의 경우, 유효회전능력에 도달하기 전에 국부좌굴이 발생하고 비탄성 후좌굴 변형이 접합부 회전능력을 정의하는데 중대한 역할을 한다. 이 연구에서는 국부좌굴로 인한 강도저하와 보 소성힌지의 회전을 모델링하여, 단조증가하중 및 반복하중이 작 용하는 특별철골모멘트골조의 강접합 보-기둥 접합부의 회전능력을 예측하기 위한 근사적 해석모델을 제안한다. 제안된 항복선 소성힌지 모델은 좌굴된 소성힌지부의 형상에 기초하여 항복선과 소성존으로 구성되고, 소성메커니즘을 통해 국부좌굴후의 거동까지 포함한 모멘트-회전각 관계를 제 공한다. 향상된 WUF-W 와 RBS 접합부를 위해 제안된 모델을 개발한 후 실험결과와 비교를 통해 검증하였다. 동반논문(변수연구)에서는 광범위 한 H-형강의 기하학적 변수 따른 접합부 회전능력에 대하여 논의하였다.

단부평판 접합부의 극한저항능력 평가를 위한 비선형 유한요소해석 모델 (Nonlinear Finite Element Analysis Model for Ultimate Capacity Estimation of End-Plate Connection)

  • 최창근;정기택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.23-28
    • /
    • 1992
  • The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.

  • PDF

반복하중을 받는 철골보 접합부의 거동 (Behavior of Steel Beam Connections under Cyclic Loading)

  • 이승준;김상배
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.23-32
    • /
    • 1999
  • 본 연구에서는 반복하중을 받는 H형강보 접합부의 거동을 실험적인 방법으로 조사하였다. 본 연구의 목적은 H형강보 접합부의 이력거동에 강제의 특성과 스캘럽의 형태가 주는 영향을 조사하는 것이다 5개의 접합부 시험체를 제작하여 반복하중을 재하면서 실험을 수행하였다. 보 접합부에서의 하중-회전변형 곡선을 얻었으며 접합부의 변형능력과 에너지 소산능력을 상호 비교하였다. 강재가 SS400인 시험제는 충분한 변형능력과 에너지소산능력을 보였으나 강재가 SM490인 시험체는 취성적인 파괴를 보였으며 변형능력이 작았다. 접합부 스캘럽의 형태는 접합부의 거동에 영향을 주지않았다.

  • PDF