• Title/Summary/Keyword: connection design

Search Result 2,559, Processing Time 0.024 seconds

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

Semi-Rigid connections in steel structures: State-of-the-Art report on modelling, analysis and design

  • Celik, Huseyin Kursat;Sakar, Gokhan
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • In the structural analysis of steel frames, joints are generally considered as rigid or hinged considering their moment transfer ability. However, the first studies conducted with the beginning of the 20th century showed that the joints do not actually fit these two definitions. In reality, a joint behaves between these two extreme points and is called semi-rigid. Including the actual state of the joint in the structural analysis provides significant economic advantages, so the subject is an intense field of study today. However, it does not find enough application area in practice. For this reason, a large-scale literature published from the first studies on the subject to the present has been examined within the scope of the study. Three important points have been identified in order to examine a joint realistically; modelling the load-displacement relationship, performing the structural analysis and how to design. Joint modelling methods were grouped under 7 main headings as analytical, empirical, mechanical, numerical, informational, hybrid and experimental. In addition to the moment-rotation, other important external load effects like axial force, shear and torsion were considered. Various evaluations were made to expand the practical application area of semi-rigid connections by examining analysis methods and design approaches. Dynamic behaviour was also included in the study, and besides column-beam connections, other important connection types such as beam-beam, column-beam-cross, base connection were also examined in this paper.

Breaking Strength Analysis for Bolt Connection of Anchor Bracket (Anchor bracket 체결 볼트에 대한 절단 강도 해석)

  • Lee, Bong-Ju;Yang, Hun-Suk;Oh, Hyeung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.55-60
    • /
    • 2011
  • For the bolster type bogie, bolster anchor body connections are proviede to transmit the longitudinal loads for traction or braking between the carbody and the truck. The bolster anchor body connection is generally composed of anchor rod bracket, anchor rod and its fastening devices. The bolster anchor body connection shall be basically capable of withstanding a longitudinal load resulting from excessive braking case or impact. Additionally the north America standard requires that the anchor rod bracket shall be frangible, I.e. the anchor rod bracket shall fail and fall away under load before the carbody structure is damaged since to protect the cabody structure in the event of unexpected accident. This paper describes the shear connection design using the optimized mechanical fasteners in the bolster anchor body connection to satisfy these Northe America requirements.

  • PDF

Experiments on Shear Connections of PSC Girders with Prefabricated Slabs

  • Shim Chang-Su;Chung Chul-Hun;Hyun Byung-Hak;Kim Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.573-579
    • /
    • 2004
  • For the fast construction and replacement of bridges in urban area, a prefabricated bridge system can be an excellent alternative. Details of prefabricated slabs for PSC girders were developed and static tests on shear connections were conducted to propose design equations of the shear connection. Stirrups and stud connectors were used as shear connectors and non-shrink mortar was used for the filling material in shear pockets for shear connectors. Stirrups and studs were fabricated to insert embedded nut-type devices in PSC girders. Shear strength of the shear connection considering chemical bond, friction and mechanical connectors was evaluated and empirical equations were suggested. Due to the mechanical connectors, ultimate slip capacity of the shear connection was sufficient for shear load redistribution, and suggested details of the shear connection showed good performance in terms of strength and ductility.

Shear Performance of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.661-671
    • /
    • 2015
  • To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.

Legal Issues and Improvement Schemes for Underground Pedestrian Connection to Utilize Three-dimensional Urban Space - With Cases of Jung-gu, Seoul - (입체적 도시공간 활용을 위한 지하연결통로 설치의 법적 쟁점과 개선방향 - 서울시 중구를 사례로 -)

  • Kim, Jee-Yeop;Yang, Hee-Seung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.69-79
    • /
    • 2019
  • The purpose of this study was to analyze legal characteristics and issues of an underground pedestrian connection, which is a very useful tool to create 3D pedestrian networks and the vibrant underground environment. To do this, this paper explored the related laws to install the connection and analyzes 74 cases of Jung-gu, Seoul to find major issues. Then, it defined the legal characteristics in terms of not only the laws but also property law in Korea, thereby suggesting the improvement schemes. As a result, this paper concluded that the connections can be installed by an Urban Planning Facility or a Road Occupation Permit, but should be considered their public interest. In addition, exactions or fees for the permit should be carefully implemented based on the characters of the connection.

Seismic response analysis of steel frames with post-Northridge connection

  • Mehrabian, Ali;Haldar, Achintya;Reyes-Salazar, Alfredo
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.271-287
    • /
    • 2005
  • The seismic behavior of two steel moment-resisting frames, which satisfy all the current seismic design requirements, are evaluated and compared in the presence of pre-Northridge connections denoted as BWWF and an improved post-Northridge connections denoted as BWWF-AD. Pre-Northridge connections are modeled first as fully restrained (FR) type. Then they are considered to be partially restrained (PR) to model their behavior more realistically. The improved post-Northridge connections are modeled as PR type, as proposed by the authors. A sophisticated nonlinear time-domain finite element program developed by the authors is used for the response evaluation of the frames in terms of the overall rotation of the connections and the maximum drift. The frames are excited by ten recorded earthquake time histories. These time histories are then scaled up to produce some relevant response characteristics. The behaviors of the frames are studied comprehensively with the help of 120 analyses. Following important observations are made. The frames produced essentially similar rotation and drift for the connections modeled as FR type and PR type represented by BWWF-AD indicating that the presence of slots in the web of beams in BWWF-AD is not detrimental to the overall response behavior. When the lateral displacements of the frames are significantly large, the responses are improved if BWWF-AD type connections are used in the frames. This study analytically confirms many desirable features of BWWF-AD connections. PR frames have longer periods of vibration in comparison to FR frames and may attract lower inertia forces. However, calculated periods of the frames of this study using FEMA 350 empirical equation is longer than those calculated using dynamic characteristics of the frames. This may result in even lower design forces and may adversely influence the design.

Numerical Study on Interior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부에 대한 해석연구)

  • 최경규;황영현;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.949-960
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to punching shear failure of the slab-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, due to complexity in the behavior and difficulty in simulating the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable data regarding to the strength and ductility from the previous experimental studies. In the present study, a numerical study was performed for interior connections of continuous flat plate. For the purpose, a computer program for nonlinear FE analyses was developed, and the validity was verified by comparisons with the existing experimental results. Through the parametric studies, the variations of bending moment, shear, and torsional moment around the connection were investigated. Based on the findings of the numerical studies, the aspects which need to be improved in current design methods were discussed. The results of the present study will be used for developing a design method for the flat plate-column connection in the companion paper.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.