• Title/Summary/Keyword: conjugated linoleic and isomers

검색결과 49건 처리시간 0.084초

Bioactive Conjugated Linoleic Acid (CLA) in Milk

  • Kee, Jun-Ill;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • 제30권6호
    • /
    • pp.879-885
    • /
    • 2010
  • Conjugated linoleic acid (CLA) isomers are found naturally in foods, such as milk, milk products, beef and others, from biohydrogenation of vegetable oils. They are heterogenous group of isomers of linoleic acid in the family of polyunsaturated fatty acids. Among the isomers of linoleic acid cis9, trans11- CLA (c9, t11-CLA) and trans10, cis12- CLA (t10, c12-CLA) are found to be biologically active isomers. These biologically active isomers either individual or combined found to be health beneficial in various diseases, such as cancer, diabetes, obesity, and atherosclerosis, conclusive participation in physiological processes are necessary. This review focused on the current study of CLA in prevention of disease, such as cancer, diabetes and atherosclerosis, and their effective function in body fat reduction, improvement of bone and muscle mass at a cellular, clinical and systematic level.

Isomer specificity of conjugated linoleic acid (CLA): 9E,11E-CLA

  • Lee, Yun-Kyoung
    • Nutrition Research and Practice
    • /
    • 제2권4호
    • /
    • pp.326-330
    • /
    • 2008
  • Conjugated linoleic acids (CLA) were identified in 1980's, since then it has been intensively studied due to its various beneficial health effects such as anti-inflammatory, anti-atherogenic, anti-carcinogenic and anti-diabetic/obesity effects. Isomer specificity of a number of CLA isomers, especially predominant isomer 9Z,11E- and 10E,12Z-CLA, is now recognized. However, the less prevalent CLA isomers have not been well characterized. Recently, studies have reported the distinctively different effects of 9E, 11E-CLA in colon cancer cells, endothelial cells, and macrophage cells compared to the rest of CLA isomers. In this review, various effects of CLAs, especially anti-inflammatory and anti-atherogenic effects, will be discussed with focusing on the isomer-specific effects and potential mechanism of action of CLA. At last, recent studies about 9E,11E-CLA in in vitro and animal models will be discussed.

Potential Health Benefits of Conjugated Linoleic Acid (CLA): A Review

  • Khanal, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권9호
    • /
    • pp.1315-1328
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid with two conjugated double bonds. Of more than a dozen isomers of CLA found naturally in dairy and meat products from ruminants, c-9, t-11 and t-10, c-12 are the two isomers with known physiological importance, including anticarcinogenic, antidiabetic, antilipogenic, and antiatherosclerotic effects. Positive effects of CLA on immune function and bone modeling have also been reported. In spite of the compelling findings in tissue cultures and experimental animal models, its effect, dose, and mechanism of action vis-à-vis specific isomers remains speculative. Results obtained from animal models are inconclusive and conflicting at times in humans, where the research data is limited. It appears that there is a long way to go before CLA could be accepted unequivocally as having definite effects in any or all of these physiological states and how such effects actually occur in humans. The objective of this review is to critically examine the available literature on potential health benefits of CLA observed in cell culture, animal models, and human subjects, wherever possible and to a certain extent the mechanism of action associated with these biological activities.

Beneficial Biological Activities of Conjugated Linoleic Acid (CLA의 생물학적 기능)

  • Ha, Yeong L.;Kim, Jeong O.;Kim, Young S.
    • Journal of Life Science
    • /
    • 제27권8호
    • /
    • pp.965-973
    • /
    • 2017
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid with conjugated double bonds at C9,C11 and C10,C12 positions. Of possible CLA isomers, a naturally occurring CLA isomer is c9,t11-CLA which is produced from linoleic acid by linoleate isomerase from various rumen and lactic bacteria, and mushroom mycelia. Meanwhile, synthetically prepared CLA contained an equal amount of c9,t11-CLA and t10,c12-CLA isomers, and other isomers as minor constituents. CLA was firstly mentioned in 1939 during the elaidinization reaction of linoleic acid. Thereafter, CLA was not an attractant to scientists because it was not scientifically interested any more. However, since the anticarcinogenic action was driven from 7,12-dimethylbenz[a]anthracene (DMBA)-induced mouse skin carcinogenesis in 1987, CLA-related researches were drastically elevated, resulting in approximately 6,100 research papers in literature, so far. CLA exhibited the significant biological activities: anticarcinogenic, antidiabetic, antihypertensive, antiatherosclerotic, body-fat reducing, antioxidative, antiinflammatory, testosterone producing and other activities. Interestingly, two major CLA isomers, c9,t11-CLA and t10,c12-CLA, exhibited different biological activities. Meanwhile, t,t-CLA isomers which is minor constituent of chemically synthesized CLA from linoleic acid exhibited more potent anticarcinogenic activity in carcinogen-induced animal models and cancer cell lines than other CLA isomrs. In the present review, the significant biological activities of CLA were discussed along with historical studies of CLA since 1939.

Preparation of a Large Quantity of CIS-9, trans-11 and trans-10, cis-12 Conjugated Linoleic Acid(CLA) Isomers from SYnthetic CLA

  • Kim, Seck-Jong;Park, Kyung-Ah;Park, Jung-H.Y.;Kim, Jeong-Ok;Ha, Yeong-Lae
    • Preventive Nutrition and Food Science
    • /
    • 제5권2호
    • /
    • pp.86-92
    • /
    • 2000
  • Conjugated linoleic acid(CLA) refers to a collective term of positional and geometric isomers of linoleic acid, which are different in their biological activities. The predominant isomer of CLA in animal tissues is cis-9, trans-11; smaller amounts of trans-10, cis-12 CLA isomers, CLA methyl ester (CLA-ME) was chemically syn-thesized from linoleic acid by the alkaline isomerization method. The synthetic CLA-ME, mainly composed of cis-9, trans-11 CLA and trans-10, cis-12 CLA, was dissolved in acetone, stored at 68$^{\circ}C$ for 1 day, and the supernatant(cis-9, trans-11 CLA-Me) was separated from the precipitate (trans-10, cis-12 CLA-Me). After the processes were repeated three times at -68$^{\circ}C$, the whole processes were repeated three times at -71$^{\circ}C$ in order to increase the purity of these two isomers. The cis-9, trans-11 CLA-Me and trans-10, cis-12 CLA isomers were further purified by the urea adduct. Purities of the cis-9, trans-11 CLA-Me and trans-10, cis-12 CLA-Me were 90.3 and 99.9%, respec-tively. This method could be employed for the preparation of a large quantity of highly purified cis-9, trans-11 CLA-Me or trans-10, cis-12 CLA-Me from synthetic CLA-Me.

  • PDF

Effect of Isomers of Conjugated Linoleic Acid on Porcine Preadipocyte Differentiation (Conjugated Linoleic Acid(CLA) 이성체가 돼지 지방전구세포의 분화에 미치는 영향)

  • Moon, H.S;Chung, C.S.
    • Journal of Animal Science and Technology
    • /
    • 제46권6호
    • /
    • pp.967-974
    • /
    • 2004
  • The current study was undertaken to determine the effect of various conjugated linoleic acid (CLA) isomers on differentiation of pig preadipocyte during culture. Preadipocyte(stroma-vascular cell) was isolated from the backfat of newborn pigs and cultured to differentiate into mature fat cell. Different doses of CLA isomers were treated to the culture media at different times. Cell differentiation was determined by measuring the glycerol3-phosphate dehydrogenase activity of the cultured preadipocytes. Twenty and fifty $\mu$M of trans110_cis 12 isomer of CLA inhibited differentiation of pig preadipocyte whereas cis9-cis II isomer stimulated the differentiation. Both cis9-transII and trans9-trans11 isomers showed no effect. Effect of CLA isomer was more evident at the early stage of culture(day 0-8), than the late stage(day 8-14). These results suggest that each CLA isomer has different effect on pig preadipocyte differentiation.

Effect of Dietary Conjugated Linoleic Acid (CLA) Isomers on Tumor Incidence and the Protein Expression of Cyclooxygenase-2 and Protein Kinase C in Colonae Mucosa of DMH-Treated Rats (식이의 Conjugated Linoleic Acid (CLA) Isomer가 DMH로 처리한 쥐에서 대장점막의 종양발생과 Cyclooxygenase-2 및 Protein Linase C 단백질 발현에 미치는 영향)

  • Park Hyun-Suh;Chun Chang-Soo;Yoon Jung Han
    • Journal of Nutrition and Health
    • /
    • 제37권9호
    • /
    • pp.763-770
    • /
    • 2004
  • This study was designed to compare the anti-carcinogenic effect of conjugated linoleic acid isomers on tumor incidence, cell proliferation and the levels of thromboxane (TX) B$_2$, prostaglandin (PG) E$_2$ and 1,2-diacylglycerol (DAG), and the related enzyme expression of cyclooxygenase (COX)-2 and protein kinase C (PKC) in colonic mucosa of 1,2-dimethy- lhydrazine (DMH) -treated rats. One hundred eight male Sprague Dawley rats were randomly divided into 3 groups depending on the types of CLA isomers, i.e. control group (no CLA contained), c9t11 group (cis-9, trans-11 CLA contained), and t10c12 group (trans-10, cis-12 CLA contained). The experimental diet was composed of protein at 20%, carbohydrate at 56.2%, and fat at 14.5% including 1.0% CLA isomers by weight. The experimental diet was fed for 30 weeks with the initiation of intramuscular injection of DMH, which was injected twice a week for 6 weeks to give total dose of 180 mg per kg body weight. Two CLA isomers (c9, t11, t10, c12) significantly reduced tumor incidence and cell proliferation by reducing the protein expression of COX-2 and PKC, and the level of TXB$_2$, PGE$_2$, and DAG in colonic mucosa. However, there was no significant difference in anti-carcinogenic effect between c9t11-CLA and t10c12-CLA.

Preparation of Conjugated Linolenic Acid from Urea Fractionated Perilla Seed Oil Hydrolysate (우레아 분별된 들기름 가수 분해물을 이용한 Conjugated Linolenic Acid(CLnA)의 합성)

  • Lee, Kyung-Su;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제40권12호
    • /
    • pp.1734-1742
    • /
    • 2011
  • Conjugated linolenic acid (CLnA) and conjugated linoleic acid (CLA) are positional geometric isomers with three and two double bonds, respectively. In this study, perilla seed oil containing 60% ${\alpha}$-linolenic acid (C18:3) and 30% linoleic acid (C18:2) was used as a reaction substrate. After the perilla seed oil was hydrolyzed, conjugated fatty acids were synthesized using different reaction parameters, such as reaction time and concentration of sodium hydroxide. As a result, CLnA, CLA, and other newly synthesized conjugated isomers were present at levels of 14.5%, 14%, and 42.2%, respectively, when the reaction was performed with 20% NaOH, at $180^{\circ}C$, and for 1 hr. The results of GC-MS and fourier transform infrared spectroscopy (FT-IR) showed that CLnA isomer of cis-9, trans-11, and trans-13 octadecatrienoate, CLA isomer of cis-9, trans-11, and trans-10, cis-12 octadecadienoate, and other conjugated isomers were produced. Using urea, ${\alpha}$-linolenic acid could be concentrated from perilla seed oil hydrolysate. After concentration by urea, the concentration of ${\alpha}$-linolenic acid reached about 70%. After alkaline-isomerization was performed on the urea fraction containing 70% ${\alpha}$-linolenic acid, the content of CLnA increased up to 16.6%.

Effect of Conjugated Linoleic Acid on the Proliferation of the Human Colon Cancer Cell Line, HT-29 (Conjugated Linoleic Acid가 대장암 세포인 HT-29의 증식에 미치는 영향)

  • 김은지;조한진;김석종;강영희;하영래;윤정한
    • Journal of Nutrition and Health
    • /
    • 제34권8호
    • /
    • pp.896-904
    • /
    • 2001
  • Conjugated linoleic acid(CLA) is a group of positional and geometric isomers of linoleic acid(LA) and exhibits anticarcinogenic activity in multiple experimental animal models. Cis-9,trns-11(c9t11) and trans-10,cis-12(t10c12) CLA are the principal isomers found in foods. The present study was performed to determine whether CLA and the two isomers inhibits HT-29 cell proliferation and to assess whether such an effect was related to changes in secretion of eicosanoids. Cells were incubated in serum-free medium with various concentrations(0 to 20$\mu$M) of CLA or LA. CLA inhibited cell proliferation in a dose-dependent manner, with maximal inhibition(70 $\pm$ 1%) observed at 20$\mu$M concentration after 96 hours. However, LA had no effect at the same concentration range. To compare the ability of c9f11 and t10c12 to inhibit cell proliferation, cells were incubated with increasing concentrations(0 to 4$\mu$M) of these isomers. T10c12 inhibited cell proliferation in a dose-dependent manner. A 66 $\pm$ 2% decrease in cell number was observed within 96 hours after addition of 4$\mu$M t10c12. By contrast, c9t11 had no effect. The concentrations of CLA and the two isomers in the plasma membrane were increased when they were added to the incubation medium. However, they did not alter the levels of arachidonic acid in plasma membrane. To assess whether the proliferation inhibiting effect of CLA was related to changes in eicosanoid production, prostaglandin E$_2$(PGE$_2$) and leukotriene B$_4$(LTB$_4$) concentrations in conditioned media were estimated by a competitive enzyme immunoassay. Both CLA and t10c12 increased the production of materials reactive to PGE$_2$ and LTB$_4$ antibodies in a dose-dependent manner. By contrast, c9t11 had no effect. These results indicate that inhibition of HT-29 cell proliferation by CLA is attributed to the effect of the t10v12 isomer. The materials reactive to PGE$_2$ and LTB$_4$ antibodies may inhibit growth stimulatory effect of arachidonic acid-derived eicosanoids on HT-29 cell proliferation.

  • PDF

The Effect of Conjugated Linoleic Acid and Its Isomers on the Proliferation of Prostate TSU-Prl Cancer Cells (Conjugated Linoleic Acid (CLA)와 그 이성체가 전립선 암세포의 증식에 미치는 영향)

  • 오윤신;김은지;김종우;김우경;이현숙;윤정한
    • Journal of Nutrition and Health
    • /
    • 제35권2호
    • /
    • pp.192-200
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of octadecadienoic acid in which the double bonds are conjugated. CLA has anticancer activity in a variety of animal cancer models, and cis-9, trans-11 (c9t11) and trans-10, cis-12(t10c12) CLA are the most predominant isomers present in the synthetic preparations utilized in these animal studies. To compare the ability of c9t11, t10c12 and an isomeric mixture of CLA to inhibit TSU-Prl cell growth, cells were incubated in a serum-free medium with various concentrations of these fatty acids. The isomeric mixture inhibited cell growth in a dose-dependent manner (1-3 $\mu$M) with a 41 $\pm$ 1% inhibition observed at 3 $\mu$M concentration after 48 hours. T10c12 also inhibited cell proliferation in a dote-dependent manner, However, the efficacy and potency of this isomer was much greater than that of the isomeric mixture with a 49 $\pm$ 2% inhibition observed at 0.3 $\mu$M concentration after 48 hours. By contrast, c9t11 slightly increased cell proliferation. To determine whether the growth-inhibiting effect of CLA is related to the changes in production of insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) by these cells, serum-free conditioned media were collected. Immunoblot analysis of conditioned media using a monoclonal anti-IGF-II antibody showed that both the isomeric mixture and t10c12 inhibited secretion of both mature 7,500 Mr and higher Mr forms of pro IGF-II, whereas c9t11 had no effect. Ligand blot analysis with 125I-IGF-II revealed the presence of two types of IGFBPs : 24,000 Mr IGFBP-4 and 30,000 Mr IGFBP-6. The production of IGFBP-4 slightly decreased at the highest concentrations of the isomeric mixture and t10c12. These results indicate that CLA inhibits human prostate cancer cell growth, an effect largely due to the action of t10c12. The growth inhibition may result, at least in part, from decreased production of IGF-II and IGFBP-4 by these cells.