• Title/Summary/Keyword: congestion detection

Search Result 163, Processing Time 0.022 seconds

Real-Time Road Traffic Management Using Floating Car Data

  • Runyoro, Angela-Aida K.;Ko, Jesuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.269-276
    • /
    • 2013
  • Information and communication technology (ICT) is a promising solution for mitigating road traffic congestion. ICT allows road users and vehicles to be managed based on real-time road status information. In Tanzania, traffic congestion causes losses of TZS 655 billion per year. The main objective of this study was to develop an optimal approach for integrating real-time road information (RRI) to mitigate traffic congestion. Our research survey focused on three cities that are highly affected by traffic congestion, i.e., Arusha, Mwanza, and Dar es Salaam. The results showed that ICT is not yet utilized fully to solve road traffic congestion. Thus, we established a possible approach for Tanzania based on an analysis of road traffic data provided by organizations responsible for road traffic management and road users. Furthermore, we evaluated the available road information management techniques to test their suitability for use in Tanzania. Using the floating car data technique, fuzzy logic was implemented for real-time traffic level detection and decision making. Based on this solution, we propose a RRI system architecture, which considers the effective utilization of readily available communication technology in Tanzania.

On the efficient buffer management and early congestion detection at a Internet gateway based on the TCP flow control mechanism (TCP 흐름제어를 이용한 인터넷 게이트웨이에서의 예측기반 버퍼관리 및 조기혼잡예측기법)

  • Yeo Jae-Yung;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.29-40
    • /
    • 2004
  • In this paper, we propose a new early congestion detection and notification technique called QR-AQM. Unlike RED and it's variation, QR-AQM measures the total traffic rate from TCP sessions, predicts future network congestion, and determine the packet marking probability based on the measured traffic rate. By incorporating the traffic rate in the decision process of the packet marking probability, QR-AQM is capable of foreseeing future network congestion as well as terminating congestion resolution procedure in much more timely fashion than RED. As a result, simulation results show that QR-AQM maintains the buffer level within a fairly narrow range around a target buffer level that may be selected arbitrarily as a control parameter. Consequently, compared to RED and its variations, QR-AQM is expected to significantly reduce the jitter and delay variance of packets traveling through the buffer while achieving nearly identical link utilization.

Development and Evaluation of Automatic Incident Detection Algorithm using Modified Flow-Occupancy Diagram (수정교통량-점유율 관계도를 이용한 돌발상황 자동검지알고리즘 개발 및 평가)

  • Kim, Sang-Gu;Kim, Young-Chun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.229-239
    • /
    • 2008
  • Most algorithms for detecting incidents have been developed under the premise that congestion must happen whenever an incident occurs. For that reason, the performance of these algorithms could not be guaranteed in cases where congestion did not happen due to traffic operations with low flows despite the occurrence of an incident. The objective of this paper is to develop an automatic incident detection algorithm using a new diagram that can reliably detect the incident under various conditions of traffic operations including a low volume state. Compared with the McMaster Algorithm, the proposed algorithm in this paper was evaluated with three different cases in which the incidents occur in traffic operations with a low volume state, a relatively high volume state, and a recurrent congestion state. It is shown that the new algorithm has a capability to identify the flow characteristics of incidents for all the three cases and is much better than McMaster algorithm in terms of detection rate and false alarm rate.

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.

A New Queue Management Algorithm for Improving Fairness between TCP and UDP Flows (TCP와 UDP 플로우 간의 공정성 개선을 위한 새로운 큐 관리 알고리즘)

  • Chae, Hyun-Seok;Choi, Myung-Ryul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.89-98
    • /
    • 2004
  • AQM (Active Queue Management) techniques such as RED (Random Early Detection) which be proposed to solve the congestion of internet perform congestion control effectively for TCP data. However, in the situation where TCP and UDP share the bottleneck link, they can not solve the problems of the unfairness and long queueing delay. In this paper, we proposed an simple queue management algorithm, called PSRED (Protocol Sensitive RED), that improves fairness and decreases queueing delay. PSRED algorithm improves fairness and decreases average queue length by distinguishes each type of flow in using protocol field of packets and applies different drop functions to them respectively.

TCP Delayed Window Update Mechanism for Fighting the Bufferbloat

  • Wang, Min;Yuan, Lingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4977-4996
    • /
    • 2016
  • The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.

A development of traffic information detection using camera

  • 김양주;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.316-323
    • /
    • 1995
  • This paper presents an image processing technique to get traffic information such as vehicle volume, velocity, and occupancy for measuring the traffic congestion rate. To obtain these information, two horizontal lines are previously set on the screen. A moving vehicle is detected using the gray level difference on each line, and also template matching method at night. Threshold values are determined by sampling pavement grey level, and updated dynamically to cope with the change of ambient light conditions. These technique is successfully used to calculate vehicle volume, occupancy, and velocity. This study can be applied to traffic signal control system for minimizing traffic congestion in urban areas.

  • PDF

An Automatic Pattern Recognition Algorithm for Identifying the Spatio-temporal Congestion Evolution Patterns in Freeway Historic Data (고속도로 이력데이터에 포함된 정체 시공간 전개 패턴 자동인식 알고리즘 개발)

  • Park, Eun Mi;Oh, Hyun Sun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.522-530
    • /
    • 2014
  • Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.

Transmission Rate-Based Overhead Monitoring for Multimedia Streaming Optimization in Wireless Networks (무선 네트워크상에서 멀티미디어 스트리밍 최적화를 위한 전송율 기반의 오버헤드 모니터링)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.358-366
    • /
    • 2010
  • In the wireless network the congestion and delay occurs mainly when there are too many packets for the network to process or the sender transmits more packets than the receiver can accept. The congestion and delay is the reason of packet loss which degrades the performance of multimedia streaming. This paper proposes a novel transmission rate monitoring-based optimization mechanism to optimize packet loss and to improve QoS. The proposed scheme is based on the trade-off relationship between transmission rate monitoring and overhead monitoring. For this purpose this paper processes a source rate control-based optimization which optimizes congestion and delay. Performance evaluated RED, TFRC, and the proposed mechanism. The simulation results show that the proposed mechanism is more efficient than REC(Random Early Detection) mechanism and TFRC(TCP-friendly Rate Control) mechanism in packet loss rate, throughput rate, and average response rate.

Performance Analysis of TCP Variants using AQM and ECN (AQM과 ECN을 사용한 TCP 변종의 성능 분석)

  • Matten, Ahmad;Anwar, Adnan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • Transmission Control Protocol as a transport layer protocol provides steady data transfer service. There are some serious concerns about the performance of TCP over diverse networks. The vital concern in TCP network environment is congestion which may occur due to quick transmission rates or because of large number of new connections entering the network at the same time. Size of queues in routers grows thus resulting in packet drops. Retransmission of the dropped packets, and reduced throughput can prove costly. Explicit Congestion Notification (ECN) in conjunction with Active Queue Management mechanisms (AQM) such as Random early detection (RED) is used for packet marking rather than dropping. In IP packet header ECN bits can be added as a sign of congestion thus avoiding needless packet drops. The proposed ECN and AQM mechanism can be implemented with help of ns2 simulator and the performance can be tested on different TCP variants.