• Title/Summary/Keyword: conformational regulation

Search Result 28, Processing Time 0.022 seconds

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • Yu, Myeong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of a 1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of a 1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of a 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these Proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of ${\alpha}$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of ${\alpha}$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of e 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Human $\alpha_1$-Antitrypsin Variant with Enhanced Conformational Stability at the Cost of Activity

  • Seo, Eun-Joo;Hana Im;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.39-39
    • /
    • 1997
  • Native strain of inhibitory SERPINS (Serine protease inhibitors) is thought to be used in the facile conformational switch to play biological regulation. Many heat stable variants of $\alpha$$_1$-antitrypsin, a prototype of inhibitory serpins, increased their stability by reducing the native strain.(omitted)

  • PDF

Structural assessment of the tetramerization domain and DNA-binding domain of CP2c

  • Jo, Ku-Sung;Ryu, Ki-Sung;Yu, Hee-Wan;Lee, Seu-Na;Kim, Ji-Hun;Kim, Eun-Hee;Wang, Chae-Yeon;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.119-124
    • /
    • 2018
  • Although the transcription factor CP2c has been recently validated as a promising target for development of novel anticancer therapy, its structure has not been solved yet. In the present study, the purified recombinant protein corresponding to the tetramerization domain of CP2c appeared to be well folded, whereas the Elf-1 domain showed a largely unfolded conformation. Particularly, the Elf-1 domain, which contains the putative DNA-binding region, showed a conformational equilibrium between relatively less-ordered and well-ordered conformers. Interestingly, addition of zinc shifted the equilibrium to the relatively more structured conformer, whereas zinc binding decreased the overall stability of the protein, leading to a promoted precipitation. Likewise, a dodecapeptide that has been suggested to bind to the Elf-1 domain also appeared to shift the conformational equilibrium and to destabilize the protein. These results constitute the first structural characterization of the CP2c domains and newly suggest that zinc ion might be involved in the conformational regulation of the protein.

Conformational Study of Hydroxy Protons in $G_{A1}$ by NMR Spectroscopy

  • Lee, Kyungik;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.16-16
    • /
    • 1996
  • Investigation of the structure of the gangliosides has proven to be very important in the understanding of their biological roles such as regulation of differentiation and growth of cells. Unexchanged hydroxyl protons and amide protons in ganglioside are protrude farther from the carbon backbone than the C-linked protons and provides nOe contacts with other protons which can provide additional distance constraints in structural determination. (omitted)

  • PDF

Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

  • Choi, Yun-Ho;Lee, Ye-Na;Park, Young-Jun;Yoon, Sung-Jin;Lee, Hee-Bong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.349-354
    • /
    • 2016
  • The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues.

The Hsp90 chaperone machinery: from structure to drug development

  • Hahn, Ji-Sook
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.623-630
    • /
    • 2009
  • Hsp90, an evolutionarily conserved molecular chaperone, is involved in the folding, stabilization, activation, and assembly of a wide range of 'client' proteins, thus playing a central role in many biological processes. Especially, several oncoproteins act as Hsp90 client proteins and tumor cells require higher Hsp90 activity than normal cells to maintain their malignancy. For this reason, Hsp90 has emerged as a promising target for anti-cancer drug development. It is still largely unknown how Hsp90 can recognize structurally unrelated client proteins. However, recent progress in structural studies on Hsp90 and its interaction with various co-chaperones has broadened our knowledge of how the Hsp90 ATPase activity, which is essential for its chaperone function, is regulated and coupled with the conformational changes of Hsp90 dimer. This review focuses on the roles of various Hsp90 co-chaperones in the regulation of the Hsp90 ATPase cycle, as well as in the selection of client proteins. In addition, the current development of Hsp90 inhibitors based on the structural information will be discussed.

Biomedical Application of Phosphoproteomics in Neurodegenerative Diseases

  • Bahk, Young Yil;Mohamed, Bari;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • Phosphorylation and dephosphorylation of proteins trigger many critical events involved in cellular response, such as regulation of enzymatic activity, protein conformational change, protein-protein interaction, and cellular localization. Any malfunction of protein phosphorylation leads to a diseased state such as diabetes, cancer, and even neurodegenerative diseases. In order to comprehend the molecular view of the complex biological processes of these diseases in depth, very sensitive and detailed analytical methods are necessary for identification of the phosphorylated residues in a protein. As part of these efforts, phosphoproteomics has been developed and applied for the elucidation of neurodegenerative diseases. In this review, we present a brief summary of phosphoproteomics approaches that are now routinely used in biomedical research, and describe the biomedical application of phosphoproteomics especially in Alzheimer's and other neurodegenerative diseases.

CRYSTAL STRUCTURE OF AN UNCLEAVED $\alpha_1$-ANTITRYPSIN WITH SEVEN STABILIZING MUTATIONS AT 2.7 $\{AA}$ RESOLUTION

  • Ryu, Seong-Eon;Park, Hee-Jeong;Kwon, Ki-Sun;Lee, Kee-Nyung;Yu, Myung-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.4-4
    • /
    • 1996
  • $\alpha$$_1$-arantitrypsin, a member of the serpin (serine protease inhibitor) family, undergoes a large structural rearrangement upon the cleavage and insertion of the reactive site loop. This conformational change is driven by the metastability of the native serpin structures and has an important role in the regulation of the inhibitory-serpin function. (omitted)

  • PDF