• Title/Summary/Keyword: conformational exchange

Search Result 22, Processing Time 0.017 seconds

Analysis of Vasopressin Receptor Type 2(AVPR2) Gene in a Pedigree with Congenital Nehrogenic Diabetes Insipidus : Identification of a Family with R202C Mutation in AVPR2 Gene (신성요붕증 가계에서 바소프레신 V2 수용체(AVPR2) 유전자 분석 : AVPR2 유전자 R202C 돌연변이의 발견)

  • Park June-Dong;Kim Ho-Sung;Kim Hee-Joo;Lee Yoon-Kyung;Kwak Young-Ho;Ha Il-Soo;Cheong Hae-Il;Choi Yong;Park Hye-Won
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.209-216
    • /
    • 1999
  • Purpose : Nephrogenic diabetes insipidus (NDI) is a rare X-linked disorder associated with renal tubule resistance to arginine vasopressin (AVP). The hypothesis that the defect underlying NDI might be a dysfunctional renal AVPR2 has recently been proven by the identification of mutations in the AVPR2 gene in NDT patients. To investigate the association of mutations in th AVPR2 gene with NDI, we analyzed the AVPR2 gene located on the X chromosome. Methods : We have analyzed the AVPR2 gene in a kindred with X-linked NDI. The proband and proband's mother were analyzed by polymerase chain reaction-single strand conformational polymorphism(PCR-SSCP) and DNA sequencing of the AVPR2 gene. We also have used restriction enzyme analysis of genomic PCR product to evaluate the AVPR2 gene. Results : C to T transition at codon 202, predictive of an exchange of tryptophan 202 by cysteine(R202C) in the third extracellular domain was identified. This mutation causes a loss of Hae III site within the gene. Conclusion : We found a R202C missense mutation in the AVPR2 gene causing X-linked NDI, and now direct mutational analysis is available for carrier screening and early diagnosis.

  • PDF

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.