• Title/Summary/Keyword: confining reinforcements

Search Result 24, Processing Time 0.017 seconds

Displacement Ductility Ratio of Reinforced Concrete Bridge Piers with Lap-splices (주철근 겹침이음 비율에 따른 RC교각의 연성능력 평가)

  • Park, Kwang-Soon;Ju, Hyeong-Seok;Shin, Hyun-Mock;Kim, Moon-Kyum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • As internal and external seismic experiment results, the seismic performance of RC bridge piers is largely dependent on the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions, and confining effects of transverse reinforcements. Capacity and displacement ductility of non-seismically designed existing RC piers are reduced by lap splices in plastic hinge regions. The provision for the lap splice of longitudinal reinforcing bars was not specified in KBDS (Korean Bridge Design Specifications) before the implementation of 1992 seismic design code, but the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions is restricted to 50% in the 2005 version of KBDS. This paper presents a seismic assessment of RC piers at lap-splicing ratios of 0%, 50%, and 100%. Through a comparison of experimental and analytic results of RC piers, we introduce an appropriate ultimate strain of confined concrete in plastic hinge regions with lap-splices, and propose a method for estimating displacement ductility ratios of non-seismically designed existing RC piers using fiber element analysis.

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.