• Title/Summary/Keyword: confining condition

Search Result 85, Processing Time 0.028 seconds

A Study on the Dynamic Behaviour of Cut-and-Cover Tunnel by Shaking Table Test (진동대 실험을 이용한 개착식터널의 동적 거동특성에 관한 연구)

  • 정형식;조병완;이영남;이두화;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.173-180
    • /
    • 2001
  • This research is aimed at investigating the dynamic response of cut-and-cover tunnel to seismic waves. We carried out shaking table test which is used a 1/40-scale(the width of prototype tunnel is about 14.2m, the height is about 8.5m) model for this research, and we analyzed the effect of depth of tunnel and slope of the ground in relation to the dynamic responses of tunnel. As a result of the test, the stress and acceleration along the tunnel decreased accordingly to the depth of increment, and this phenomenon is caused by the increase of the confining effect of ground. Also, the dynamic responses of tunnel showed a tendency to rise according as ground declined gently. In comparison the result of shaking table test with that of structural analysis on ordinary condition, we conclude that seismic waves do not affect cut-and-cover tunnel when the depth of tunnel is over the diameter of tunnel.

  • PDF

Mode II fracture toughness determination of rocks using short beam compression test (짧은 보 압축 시험법을 이용한 암석의 모드 II 파괴 인성 측정)

  • Ko, Tae Young;Kemeny, J.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.547-557
    • /
    • 2013
  • The mode II fracture toughness and strength due to shear stress are important parameters in the stability of caprock and injection zone with application to geological sequestration of carbon dioxide. In this research, a short beam compression test has been used to determine the shear strength and the mode II fracture toughness for Coconino sandstone. The average value of the shear strength and mode II fracture toughness are estimated to be 23.53 MPa and 1.58 MPa${\surd}$m respectively. The stress intensity factor is suggested by finite element analysis using the displacement extrapolation method. The effect of biaxial stress and water saturation on the fracture toughness has also been investigated. The fracture toughness increases with confining stresses, but decreases by 11.4% in fully saturated condition.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Reinforcing Effect of Pre-Tensioned Rock Bolts in the Jointed Rocks Condition (록볼트 긴장에 의한 수평절리암반의 보강효과)

  • An, Joung-Hwan;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.388-396
    • /
    • 2009
  • Rock bolt is one of the most important supports for tunnelling to prevent excessive ground relaxation at the primary tunnel excavation stage. It forms a ground arch band by confining the ground around a tunnel. Rock bolt has various effects, such as support or hanging effect, internal pressure effect, arching effect, ground improvement effect etc. Most studies on rock bolt focused on the concept of support, but only a few researches on the ground reinforcing effect by pre-tensioning a rock bolts. In this study, large scale model tests are performed to investigate the ground reinforcing effect of rock bolts for regularly jointed rocks. Simple beam model was built to find out the reinforcing effect of jointed rocks, which was reinforced by pre-tensioned rock bolts. Settlement of model beam was analyzed through measuring its sagging for various installation intervals.

Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves (MASW 조사를 통한 사력댐 코어존 동적물성의 평가)

  • Lee, Jong-Wook;Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF

Simulation of Dynamic in-situ Soil Properties for the Centrifuge Test (Hualien Site in Taiwan) (원심 모형 시험을 위한 동적 현장 지반 모사 기법 연구(대만 화련 지반))

  • Ha, Jeong-Gon;Lee, Sei-Hyun;Choo, Yun-Wook;Kim, Se-Hee;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The simulation of the field dynamic soil properties for soil modeling in the centrifuge test is important. In this study, the process of soil modeling based on the shear wave velocity profile is developed. From the resonant column test in each confining pressure, the shear wave velocity profile is expected and the modeling condition is determined by comparing it with that in the field. During the dynamic centrifuge test, the bender element test is performed for measuring the in-flight shear wave velocity profile, and the applicability of the proposed method was verified. This modeling method is applied to the centrifuge test of the Hualien Large-Scale Seismic test.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Compacted Silt under Various Suction Levels (다양한 석션 레벨에서의 불포화실트의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2008
  • It has been recognized that the behaviour of unsaturated soil plays an important role in geomechanics. However, up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. From the test results, the behaviours of wetting-induced collapses are observed during the drainage/water absorption tests. Under exhausted-drained conditions during shearing, the shear strength increases with an increasing initial suction. On the other hand, the volume changes become small with an increase in the initial suction. And, the volumetric strain during shearing is independent of the confining pressure.

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.