• Title/Summary/Keyword: configuration prefetch

Search Result 1, Processing Time 0.014 seconds

Reconfigurable SoC Design with Hierarchical FSM and Synchronous Dataflow Model (Hierarchical FSM과 Synchronous Dataflow Model을 이용한 재구성 가능한 SoC의 설계)

  • 이성현;유승주;최기영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.619-630
    • /
    • 2003
  • We present a method of runtime configuration scheduling in reconfigurable SoC design. As a model of computation, we use a popular formal model of computation, hierarchical FSM (HFSM) with synchronous dataflow (SDF) model, in short, HFSM-SDF model. In reconfigurable SoC design with HFSM-SDF model, the problem of configuration scheduling becomes challenging due to the dynamic behavior of the system such as concurrent execution of state transitions (by AND relation), complex control flow (HFSM), and complex schedules of SDF actor firing. This makes it hard to hide configuration latency efficiently with compile-time static configuration scheduling. To resolve the problem, it is necessary to know the exact order of required configurations during runtime and to perform runtime configuration scheduling. To obtain the exact order of configurations, we exploit the inherent property of HFSM-SDF that the execution order of SDF actors can be determined before executing the state transition of top FSM. After obtaining the order information and storing it in the ready configuration queue (ready CQ), we execute the state transition. During the execution, whenever there is FPGA resource available, a new configuration is selected from the ready CQ and fetched by the runtime configuration scheduler. We applied the method to an MPEG4 decoder and IS95 design and obtained up to 21.8% improvement in system runtime with a negligible overhead of memory usage.