• Title/Summary/Keyword: conebeam CT

Search Result 8, Processing Time 0.026 seconds

THE STUDY ON COURSE OF THE INFERIOR ALVEOLAR CANAL IN THE MANDIBULAR RAMUS USING CONEBEAM CT (하악지에서의 하치조신경관 주행에 대한 Conebeam CT를 이용한 연구)

  • Kim, Hyong-Woo;Kwon, Kyung-Hwan;Min, Seung-Ki;Oh, Seung-Hwan;Chee, Young-Deok;Koh, Se-Wook;Lee, Jae-Hwan;Ohn, Byung-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.5
    • /
    • pp.386-393
    • /
    • 2009
  • Objectives: This study was performed to evaluate course of the inferior alveolar canal in the mandibular ramus and to find safety zone when ramal bone is harvested. Patients and Methods: From January, 2009 to February, 2009, the 20 patients who visited in the Department of Oral and Maxillofacial Surgery, Sanbon Dental Hospital. Wonkwang University and the Conebeam CT was taken of various chief complaints, were selected. The patients who had left and right mandibular first molar and incisor missing, jaw fracture and bone pathology were excluded. The R point was defined as the point which occlusal plane was crossed to the mandibular anterior ramus(external oblique ridge). In the cross-sectional coronal and axial views, the inferior alveolar canal position to the R point, buccal bone width(BW), alveolar crest distance(ACD), distance from alveolar crest to occlusal plane(COD) and inferior alveolar canal to sagittal plane(CS) were measured and horizontal distance(HD), vertical distance(VD) and nearest distance(ND) were measured. Results: The inferior alveolar canal is located $6.19{\pm}1.21\;mm$ from the R point. Horizontal distance from the R point were $13.07{\pm}2.45\;mm$, vertical distance from the R point were $14.24{\pm}2.41\;mm$ and nearest distance from the R point were $10.12{\pm}1.76\;mm$. The course of the inferior alveolar canal was positioned within $0.61{\pm}0.68\;mm$. The distance from external buccal bone to the inferior alveolar canal was increased from the R point anteriorly. Conclusions: It is considered that the mandibular ramus from the R point to 10 mm anteriorly can be harvested safely at ramal bone grafting.

Basic Performance Evaluation of the First Model of 4-Dimensional CT-Scanner

  • Mori, Shinichiro;Endo, Masahiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuzi;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.376-378
    • /
    • 2002
  • This work was carried out to evaluate the basic performances for 4D CT, which employed continuously rotating conebeam. The performances were evaluated with the same method as the conventional CT, because the standard method of evaluating 4D CT has not yet been established, and we think this result was helpful to establish it. 4D CT can give dynamic volume imaging data continuously and with high-speed. The results were isotropic except for the evaluation of distortion in which small distortions gradually appeared as coming off the center of phantom in longitudinal direction.

  • PDF

Detection of maxillary second molar with two palatal roots using cone beam computed tomography: a case report (두개의 구개측 치근을 갖는 상악 제2대구치에서 cone beam computed tomography 활용: 증례보고)

  • Kim, Jeong-Hee;Song, Byeongcheol
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • The purpose of this clinical report was to show anatomical variations in permanent maxillary second molar using computed tomography (CT). This case report describes the application of CT to detect the unusual root anatomy of maxillary second molar with 2 separate palatal roots for successful endodontic treatment procedures. The use of cone beam computed tomography (CBCT) can overcome the limitation of the periapical standard radiography caused by the overlap of buccal and secondary palatal roots.

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

ANATOMICAL ASSESSMENT OF ACCESSORY MENTAL FORAMEN USING 3D CONE BEAM COMPUTED TOMOGRAPHY IN KOREAN (한국인에서 3차원 conebeam CT를 이용한 부이공의 해부학적인 평가)

  • Keum, Ki-Chun;Oh, Sung-Hwan;Min, Seung-Ki;Lee, Byung-Do;Lee, Jong-Bok;Lee, Dae-Jeong;Paeng, Jun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • Purpose: The mental foramen (MF) is an important anatomical structure during local anesthesia and surgical procedures in terms of achieving effective mental nerve blocks and avoiding injuries to the neurovascular bundles. Thus, understanding the anatomic features of the mandibular canal and accessory mental foramen in Korean could contribute to the surgical anatomic assessment. This study was to elucidate frequency, position and course of AMF (accessory mental foramen) in Korean using 3D cone beam computed tomography. Materials and Methods: The CBCT (Conbeam computed tomography) DICOM data (Alphard, Asahi, Japan) from 540 patients in korean were analyzed. We investigated images of 3D CBCT using Ondemand (CyberMed, Korea) software program on the incidence and anatomical characteristics of accessory foramen. Results: The accessory mental foramina were found in 17 patients. Accessory mental foramina exist predominantly in the apical area of the second premolar and posteroinferior area of the mental foramen. The accessory branches of the mandibular canal showed common characteristics in the course of gently sloping posterosuperior direction in the buccal surface area. The size of most AMF was obviously smaller than that of MF. Conclusion: We could identify frequency, position and course of AMF (accessory mental foramen) by the anatomical study of the accessory mental foramen using 3D cone beam CT in Korean.

Various autogenous fresh demineralized tooth forms for alveolar socket preservation in anterior tooth extraction sites: a series of 4 cases

  • Kim, Eun-Suk;Lee, In-Kyung;Kang, Ji-Yeon;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.27.1-27.7
    • /
    • 2015
  • The aim of this study was to evaluate the clinical relevance of autogenous fresh demineralized tooth (Auto-FDT) prepared at chairside immediately after extraction for socket preservation. Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. Extraction sockets were filled with these materials and dental implants were installed immediately or after a delay. A panoramic radiograph and a conebeam CT were taken. In two cases, tissue samples were taken for histologic examination. Vertical and horizontal maintenance of alveolar sockets showed some variance depending on the Auto-FDT and barrier membrane types used. Radiographs showed good bony healing. Histologic sections showed that it guided good new bone formation and resorption pattern of the Auto-FDT. This case series shows that Auto-FDT prepared at chairside could be a good material for the preservation of extraction sockets. This study will suggest the possibility of recycling autogenous tooth after immediate extraction.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.