• Title/Summary/Keyword: conductivity.

Search Result 8,384, Processing Time 0.032 seconds

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Influence of Ca Containing Fertilizers on the Growth of Mother and Daughter Plants, and Physiological Disorders in Propagation of 'Seolhyang' Strawberry through Plastic Bag Cultivation (배지경 자루 재배를 통한 '설향' 딸기의 번식에서 칼슘 혼합비료가 모주 및 자묘의 생장과 생리장해에 미치는 영향)

  • Choi, Jong Myung;Lee, Hei Soo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • The objective of this research was to investigate the impact of Ca fertilizer on the growth of mother plants, physiological disorders, and occurrence of daughter plants in propagation of 'Seolhyang' strawberry through plastic bag cultivation. To achieve this, chemicals of 1.125 mM $Ca(OH)_2$, 0.375 mM $MgCl_2$, 1.250 mM KCl were blended and designated to combined fertilizer (CF). Then, the effect was compared to the treatment of no Ca application (control) and a commercial fertilizer, CalMag (13-0-1.9-16-6:N-$P_2O_5$-$K_2O$-CaO-MgO), when those were applied every two weeks with controlled electrical conductivity (EC) of solution such as 0.6 or 1.0 $dS{\cdot}m^{-1}$. The number of plants showing Ca deficiency symptoms was the highest in control treatment, but those decreased significantly in CF or CalMag treatments. The differences between CF and CalMag in appearance of Ca deficient plants were not significant when two fertilizers were applied with same EC. The fresh and dry weights of mother plants were the greater in the treatments of CF or CalMag than those of control treatment. The treatments of 1.0 $dS{\cdot}m^{-1}$ of CF or CalMag were more effective than those of 0.6 $dS{\cdot}m^{-1}$ on the fresh and dry weight of the mother plants. The runner lengths in the treatment of 1.0 $dS{\cdot}m^{-1}$ of CF were the longest among the all treatments tested. The treatments of 1.0 $dS{\cdot}m^{-1}$ were more effective than those of 0.6 $dS{\cdot}m^{-1}$ of CF or CalMag in lengths and fresh and dry weight of runners. The fresh and dry weights of daughter plants were heavier in the treatments of CF than those of CalMag. Based on the above results, we concluded that the Ca deficiency in raising 'Seolhyang' strawberry can be lessened by the application of Ca containing fertilizers, but combined application of Ca, K and Mg was more effective than that of Ca alone for seedling production.

Temporal Dynamics of Water Quality in Junam Reservoir, as a Nest of Migratory Birds (철새도래지인 주남저수지의 계절적 수질변동)

  • Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The objectives of this study were to evaluate seasonal and interannual variations of water quality and nutrient input (N, P) in Junam Reservoir, a nesting waterbody of migratory birds, over 10 years during 1998$\sim$2007 along with dynamic relations of trophic parameters using empirical models. Concentrations of COD averaged 7.8 mg $L^{-1}$ during the study, while TN and TP were $1.4\;mg\;L^{-1}$ and $83{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypereutrophic state. Values of monthly COD had strong positive relations (r=0.669, p<0.001) with conductivity, indicating that summer rainfall resulted in an ionic dilution of the reservoir water by rainwater and contributed better water quality. One-way ANOVA tests showed significant differences (F=$5.2{\sim}12.9$, p<0.05) in TN and TP between the before and after the bird migration. In other words, nutrient levels were greater in the absence of migratory birds than in the presence of the migratory birds, suggesting a no-effect on nutrient inputs by the birds. Also, one-way ANOVA indicated no significant differences (F=$0.37{\sim}0.48$, p>0.05) in $NO_{3^-}N$ and $NH_{3^-}N$ between the before and after the birds migration. Linear empirical models using trophic parameters showed that algal biomass as CHL, had significant low correlations with TN ($R^2$=0.143, p<0.001, n=119) and TP ($R^2$=0.192, p<0.001, n=119). These results suggest that influences of nutrients on the CHL were evident, but the effect was weak. This fact was supported by analysis of Trophic State Index Deviation (TSID). Over 70% in the observed values of "TSI (CHL)-TSI (SD)" and "TSI (CHL)-TSI (TP)" were less than zero, suggesting a light limitation on the CHL by inorganic suspended solids.

Hydrogeochemical Characterization of Groundwater in Jeju Island using Principal Component Analysis and Geostatistics (주성분분석과 지구통계법을 이용한 제주도 지하수의 수리지화학 특성 연구)

  • Ko Kyung-Seok;Kim Yongie;Koh Dong-Chan;Lee Kwang-Sik;Lee Seung-Gu;Kang Cheol-Hee;Seong Hyun-Jeong;Park Won-Bae
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.435-450
    • /
    • 2005
  • The purpose of the study is to analyze the hydrogeochemical characteristics by multivariate statistical method, to interpret the hydrogeochemical processes for the new variables calculated from principal components analysis (PCA), and to infer the groundwater flow and circulation mechanism by applying the geostatistical methods for each element and principal component. Chloride and nitrate are the most influencing components for groundwater quality, and the contents of $NO_3$ increased by the input of agricultural activities show the largest variation. The results of PCA, a multivariate statistical method, show that the first three principal components explain $73.9\%$ of the total variance. PC1 indicates the increase of dissolved ions, PC2 is related with the dissolution of carbonate minerals and nitrate contamination, and PC3 shows the effect of cation exchange process and silicate mineral dissolution. From the results of experimental semivariogram, the components of groundwater are divided into two groups: one group includes electrical conductivity (EC), Cl, Na, and $NO_3$, and the other includes $HCO_3,\;SiO_2,$ Ca, and Sr. The results for spatial distribution of groundwater components showed that EC, Cl, and Na increased with approaching the coastal line and nitrate has close relationship with the presence of agricultural land. These components are also correlated with the topographic features reflecting the groundwater recharge effect. The kriging analysis by using principal components shows that PC 1 has the different spatial distribution of Cl, Na, and EC, possibly due to the influence of pH, Ca, Sr, and $HCO_3$ for PC1. It was considered that the linear anomaly zone of PC2 in western area was caused by the dissolution of carbonate mineral. Consequently, the application of multivariate and geostatistical methods for groundwater in the study area is very useful for determining the quantitative analysis of water quality data and the characteristics of spatial distribution.

Effect of Nutrient Solution Strength on pH of Drainage Solution and Root Activity of Strawberry 'Sulhyang' in Hydroponics (배양액의 농도가 배액의 pH와 딸기 '설향' 뿌리의 활성에 미치는 영향)

  • Jun, Ha-Joon;Byun, Mi-Soon;Liu, Shi Sheng;Jang, Mi-Soon
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • Experiments were conducted to investigate the optimum concentration of the nutrient solution in strawberry 'Sulhyang' with hydroponics in relationship between root activity and nutrient concentrations. Nutrient solutions for strawberry, made by Yamazaki, were supplied EC 0.5, 1.0, 2.0 $dS{\cdot}m^{-1}$ during experiment period. Growth of shoot and root of strawberries grown in visible plastic pot was observed during experiment. Petiole length was longest in plants grown in EC 1.0 $dS{\cdot}m^{-1}$, followed by 2.0 and 0.5 $dS{\cdot}m^{-1}$. Leaf width was longest in plants grown in EC 1.0 $dS{\cdot}m^{-1}$, followed by 0.5 and 2.0 $dS{\cdot}m^{-1}$. Fruit length, fruit diameter, fruit weight and yield were higher in EC 0.5 and 1.0 $dS{\cdot}m^{-1}$ than 2.0 $dS{\cdot}m^{-1}$ treatment but, soluble solids of the fruit did not show statistical differences among treatments. Shoot dry weight was heaviest in EC 1.0 $dS{\cdot}m^{-1}$, followed by 0.5 and 2.0 $dS{\cdot}m^{-1}$. Root dry weight was heavier in EC 0.5 and 1.0 $dS{\cdot}m^{-1}$ but significantly light in 2.0 $dS{\cdot}m^{-1}$. pH of the drainage solution was elevated in low nutrient concentration and lowered in high concentration. Also root activity was high in low nutrient concentration and low in high concentration. As a result, the optimum EC for strawberry 'Sulhyang' was EC 1.0 $dS{\cdot}m^{-1}$ in this experiment. It was confirmed that there was high relationship between root activity and pH of drainage solution. This result will be utilized as an indicator for strawberry hydroponics.

Assessment of Growth Conditions and Maintenance of Law-Protected Trees in Je-cheon City (제천시 보호수의 생육환경 및 관리현황 평가)

  • Yoon, Young-Han;Ju, Jin-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • Law-protected trees are our precious asset as natural resources with history and tradition and natural heritage which should be protected and maintained well to bequeath next generation. Law-protected trees have not only thremmatologic and genetic meaning but also environmental and emotional meaning for their value to be high. This study investigated location, vitality, wrapping condition of root area and status of maintenance of the trees to figure out their growth environment and status of maintenance in a small-middle city through survey on those of law-protected trees in Je-cheon. There showed 300 more year old trees in Je-cheon mostly and the number of trees located in flat fields was the highest. For location type, village, hill and road types were presented in the order and for degree of development, land for building was found most frequently. The average electric resistance of the formative layer was measured to be $8.4k{\Omega}$ and four trees showed bark separation. Most law-protected trees underwent tree surgery, and complete bareness of root area was observed in a tree. The root area of two trees was covered with concrete. pH of soil was recorded to be 5.0~8.4 with its average of 7.1 and electric conductivity(EC) was less than 0.5 dS/m. For status of maintenance rearing facilities were placed for 16 trees out of totally 48 ones and stone fence was done for three ones. Tree surgery was conducted for 33 trees to prevent and to treat decomposed parts of holes. Direction boards were installed for 23 trees. Based on these results, measures to manage systematically law-protected trees in Jecheon could be suggested as follows. First, a sufficient space for growth of low part of trees should be secured. Second, a voluntary management should be induced by advertising them to residents in a community. Third, rearing facilities and direction boards of law-protected trees should be placed and related education should be conducted. Fourth, through operation of the department for law-protected trees consisting of related professions and cooperation among related departments the trees should be maintained continuously.

Effect of Application Rate of a Controlled Release Fertilizer on the Changes in Medium EC and Growth of Subirrigated Vinca and Salvia (저면관수 재배에서 완효성 비료의 양이 배지의 EC 및 일일초와 살비아의 생장에 미치는 영향)

  • Kang, Jong Goo;Lee, In Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Plug seedlings of vinca (Catharanthus roseus L. 'Pacifica Punch') and salvia (Salvia splendens F. Sellow ex Roem & Schult 'Maestro') were transplanted into square plastic pots (145 mL volume) filled with a soilless growing medium. To determine the effect of application rate on the growing medium EC and growth of plants, 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g per pot of a controlled release fertilizer (14-14-14 Osmocote, 14N-6.2P-11.6K) were mixed with the growing medium. Plants were subirrigated daily with tap water. In both vinca and salvia, growing medium EC increased as application rate was elevated. Growing medium EC was relatively constant over a whole crop period when the application rate was less than 1.5 g per pot, while it decreased throughout the experiment at higher application rates such as 2.0 to 4.0g per pot in both species. The greatest leaf area, plant height, and shoot dry weight of vinca were obtained when plants were fertilized with 2.0 to 4.0 g per pot of the fertilizer, resulting in a growing medium EC of $1.0{\sim}1.7dS{\cdot}m^{-1}$ throughout the experiment. Leaf area, shoot dry weight, and chlorophyll content of salvia increased with elevated application rates. Leaf area, shoot dry weight, and chlorophyll content of salvia were the greatest when plants were fertilized with 4.0 g per pot, resulting in growing medium EC of $1.0{\sim}4.0dS{\cdot}m^{-1}$ throughout the experiment. Plant height of salvia was the greatest when plants were fertilized with 2.0 to 4.0g per pot. Concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and sulfur (S) in the shoots of vinca increased, while concentration of calcium (Ca) decreased with elevated application rates. Concentrations of boron (B) and manganese (Mn) in the shoots of vinca increased as the application rate decreased.

Humidification and Shading Affect Growth and Development of Cutting Propagated 'Maehyang' Strawberry (Fragaria × ananassa Duch.) at Propagation Stage (삽목번식 시 가습과 차광 처리에 따른 '매향' 딸기의 생육)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Wei, Hao;Hu, Jiangtao;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2019
  • This study was conducted to examine the effect of humidification and shading during cutting propagation on growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' plants at a propagation stage. The runner cuttings were stuck on Nov. 23, 2017 in propagation benches set in a Venlo-type glasshouse. Four shading treatments, no shading (control, C), 55% shading with white lawn (W55), 55% black shading net (B55), or 100% black plastic film (B100) with either an intermittent fog system (H) or without fog system. The shading and fog systems were removed 2 weeks after sticking of strawberry cuttings. A nutrient solution for strawberry, which was developed by Yamazaki, was supplied once a day with electrical conductivity (EC) $1.6dS{\cdot}m^{-1}$ and pH 5.8. Growth parameters such as plant height, longest root, crown diameter, leaf chlorophyll, leaf area and fresh and dry weight were measured at 7 days and 26 days after sticking. There was no significant difference in growth of above-aerial part of strawberry. The overall growth of the strawberry roots was better grew by providing fog than that not provide fog. The root fresh weight and root dry weight after 26 days after sticking of strawberry cutting was the best in the treatment that provided fog system without shading (CH). The longest root after 26 days after sticking of strawberry cutting was the best in the treatments that provided fog system with either 55% white lawn (W55H) and 55% black shading net (B55H). These results suggest that morphogenesis of these plants were affected by humidification and shading types. In a broader perspective, these results can be used to optimize studies of other crops grown from cuttings.

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.