• Title/Summary/Keyword: conductive electrodes

Search Result 264, Processing Time 0.023 seconds

Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics (전도성 에폭시를 이용한 직물 위에 구현된 건식 생체전위 전극의 연구)

  • Cha, Doo-Yeol;Jung, Jung-Mo;Kim, Deok-Su;Yang, Hee-Jun;Choi, Kyo-Sang;Choi, Jong-Myong;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • In this paper, micro dried bio-potential electrodes are demonstrated for sEMG (surface ElectroMyoGraphic) signal measurement using conductive epoxy on the textile fabric. Micro dried bio-potential electrodes on the textile fabric substrate have several advantages over the conventional wet/dry electrodes such as good feeling of wearing, possibility of extended-wearing due to the good ventilation. Also these electrodes on the textile fabric can easily apply to the curved skin surface. These electrodes are fabricated by the screen-printing process with the size of $1mm{\times}10mm$ and the resultant resistance of these electrodes have the average value of $0.4{\Omega}$. The conventional silver chloride electrode shows the average value of $0.3{\Omega}$. However, the electrode on the textile fabric are able to measure the sEMG signal without feeling of difference and this electrode shows the lower resistance of $1.03{\Omega}$ than conventional silver chloride electrode with $2.8{\Omega}$ in the condition of the very sharp curve surface (the radius of curvature is 40 mm).

Characteristics of Graphene/Metal Grid Hybrid Transparent Conductive Films

  • Kim, Sung Man;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.429-429
    • /
    • 2013
  • We present a systematic study of the electrical, optical and electromechanical properties of flexible graphene/metal grid hybrid transparent conductive electrodes using 4-point prove method, ultraviolet/visible spectrometer and inner/outer bending test system. The hybrid electrodes were synthesized by depositing a silver grid on a graphene surface. The sheet resistance of hybrid electrodes was as low as 30 Ω/square, while the transmittance was 90%. The electromechanical properties as a function of the change of bending radius were evaluated by measuring the change in resistance. The result will be presented in detail. We believe that these results will provide useful information for the flexible optoelectronic devices based on graphene transparent electrodes.

  • PDF

Research on the Development of Conductive Composite Yarns for Application to Textile-based Electrodes and Smartwear Circuits (스마트웨어용 텍스타일형 전극 및 배선으로의 적용을 위한 전도성 복합사 개발 연구)

  • Hyelim Kim;Soohyeon Rho;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.651-660
    • /
    • 2023
  • This study aimed to research the local production of conductive composite yarn, a source material used in textile-type electrodes and circuits. The physical properties of an internationally available conductive composite yarn were analyzed. To manufacture the conductive composite yarn, we selected one type of conductive yarn with Ag-coated polyamide of 150d 1 ply, along with two types of polyethylene terephthalate (PET) with circular and triangular cross-sections, both with 150d 1 ply. The conductive composite yarn samples were manufactured at 250, 500, 750, and 1000 turns per meter (TPM). For both conductive composite yarn samples manufactured from two types of PET filaments, the twist contraction rate of the sample with a triangular cross-section was stable. Among the samples, the tensile strength of the sample manufactured at 750 TPM was the highest at approximately 4.1gf/d; the overall linear resistance was approximately 5.0 Ω/cm, which is within the target range. It was confirmed that the triangular cross-section sample manufactured with 750 TPM had a similar linear resistance value to the advanced product despite the increase in the number of twists. In future studies, we plan tomanufacture samples by varying the twist conditions to derive the optimal conductive yarn suitable for smartwear and smart textile manufacturing conditions.

A Development of Brassiere Prototype for Attaching the Measuring Module of ECG and Body Movement while Sleeping (심전도 및 수면시 체동 측정 모듈 장착을 위한 브래지어 프로토타입 개발)

  • Kweon, Soo Ae;Sohn, Boo-hyun
    • Journal of Fashion Business
    • /
    • v.21 no.2
    • /
    • pp.78-90
    • /
    • 2017
  • In this study, brassiere prototype was developed for attaching the measuring module of ECG measurement and body movement while sleeping. For ECG measurement, textile electrodes was made of stretch fabric containing polyurethane in consideration of elasticity of brassiere band. It was used as a conductive yarn by silver coating on the warp. The textile electrodes was woven with twisted twill to increase the density of conductive yarns. The pressure of the brassiere band was enough to sensing stably the ECG, and the elastic band of the brassiere was designed to be wider than 3cm to install the textile electrodes inside, so that textile electrodes was close fitting to the skin at a constant pressure without lifting. The textile electrodes coated with silicon on rear was attached to brassiere elastic band, and the module was installed with a snap connector to textile electrodes of brassiere band. The module was suitable to monitering ECG measurement of a typical R peak, pulse rate and body movement while sleeping without interfering.

Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode

  • Naeemy, A.;Ehsani, A.;Jafarian, M.;Moradi, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.88-94
    • /
    • 2015
  • In this study we investigated the electrocatalytic oxidation of saccharose on conductive polymer- Nickel oxide modified graphite electrodes based on the ability of anionic surfactants to form micelles in aqueous media. This NiO modified electrode showed higher electrocatalytic activity than Ni rode electrode in electrocatalytic oxidation of saccharose. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of saccharose was found in agreement with the values obtained from CV measurements.

Cycling Performance of Supercapacitors Assembled with Polypyrrole/Multi-Walled Carbon Nanotube/Conductive Carbon Composite Electrodes

  • Paul, Santhosh;Kim, Jae-Hong;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Polypyrrole (PPy)/multi-walled carbon nanotube (MWCNT)/conductive carbon (CC) composites are synthesized by the chemical oxidative polymerization method. The morphology analysis of the composite materials indicates uniform coating of PPy over MWCNTs and conductive carbon. The electrochemical performances of PPy/MWCNT/CC composites with different compositions are evaluated in order to optimize the composition of the composite electrode. Galvanostatic chargedischarge measurements and electrochemical impedance spectroscopy studies prove the excellent cycling stability of the PPy/MWCNT/CC composite electrodes.

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

The direction and formation of carbonized conductive path according to surface leakage between electrodes (전극간 표면누설에 의한 탄화도전로의 생성과 방향성)

  • Shong, Kil-Mok;Han, Woon-Ki;Lee, Ki-Yoen;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1525-1526
    • /
    • 2006
  • Electrical current always travels through the minimum resistance path. In this paper, we are studied on the direction and formation of carbonized conductive path according to surface leakage between electrodes. The analysis of characteristics of the arc discharge as surface is broken down between exposed live parts. Using the HSIS(high speed imaging system, 100,000fps, redlake ltd., USA), it took photographs by arc growth mechanism occurred in on/off surge, ground fault and discharge between electrodes. Therefore, it recommended for results of technology development and application such as theoretic verification of an arc direction and economic security according to a technology about connecting arc generation in surfaces of insulators. Hereafter, it expected effects that application of energy utility technology through the arc control.

  • PDF

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.