DOI QR코드

DOI QR Code

Cycling Performance of Supercapacitors Assembled with Polypyrrole/Multi-Walled Carbon Nanotube/Conductive Carbon Composite Electrodes

  • Paul, Santhosh (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jae-Hong (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2011.05.06
  • Accepted : 2011.06.08
  • Published : 2011.06.30

Abstract

Polypyrrole (PPy)/multi-walled carbon nanotube (MWCNT)/conductive carbon (CC) composites are synthesized by the chemical oxidative polymerization method. The morphology analysis of the composite materials indicates uniform coating of PPy over MWCNTs and conductive carbon. The electrochemical performances of PPy/MWCNT/CC composites with different compositions are evaluated in order to optimize the composition of the composite electrode. Galvanostatic chargedischarge measurements and electrochemical impedance spectroscopy studies prove the excellent cycling stability of the PPy/MWCNT/CC composite electrodes.

Keywords

References

  1. B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991). https://doi.org/10.1149/1.2085829
  2. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon and W.V. Schalkwijk, Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  3. A. Burke, J. Power Sources, 91, 37 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7
  4. R. Kotz and M.Carlen, Electrochim. Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  5. D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, J. Electrochem. Soc., 147, 2923 (2000). https://doi.org/10.1149/1.1393626
  6. K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park and S.H. Chang, J. Power Sources, 103, 305 (2002). https://doi.org/10.1016/S0378-7753(01)00862-X
  7. K.R. Prasad and N. Munichandraiah, J. Power Sources, 112, 443 (2002). https://doi.org/10.1016/S0378-7753(02)00419-6
  8. B.C. Kim, J.S. Kwon, J.M. Ko, J.H. Park, C.O. Too and G.G. Wallace, Synth. Met., 160, 94 (2010). https://doi.org/10.1016/j.synthmet.2009.10.011
  9. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, Chem. Pyhs. Lett., 347, 36 (2001). https://doi.org/10.1016/S0009-2614(01)01037-5
  10. J.H. Park, J.M. Ko, O.O. Park and D.W. Kim, J. Power Sources, 105, 20 (2002). https://doi.org/10.1016/S0378-7753(01)00915-6
  11. M.D. Ingram, H. Staesche and K.S. Ryder, Solid State Ionics, 169, 51 (2004). https://doi.org/10.1016/j.ssi.2002.12.003
  12. L.Z. Fan and J. Maier, Electrochem. Commun., 8, 937 (2006). https://doi.org/10.1016/j.elecom.2006.03.035
  13. K.S. Ryu, Y.G. Lee, Y.S. Hong, Y.J. Park, X. Wu, K.M. Kim, M.G. Kang, N.G. Park and S.H. Chang, Electrochim. Acta, 50, 843 (2004). https://doi.org/10.1016/j.electacta.2004.02.055
  14. K. Lota, V. Khomenko and E. Frackowiak, J. Phys. Chem. Solids, 65, 295 (2004). https://doi.org/10.1016/j.jpcs.2003.10.051
  15. C. Arbizzani, M.C. Gallazzi, M. Mastragostino, M. Rossi and F. Soavi, Electrochem. Commun., 3, 16 (2001). https://doi.org/10.1016/S1388-2481(00)00139-9
  16. M. Mastragostino, C. Arbizzani and F. Soavi, Solid State Ionics, 148, 493 (2002). https://doi.org/10.1016/S0167-2738(02)00093-0
  17. K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae and Y.H. Lee, J. Electrochem. Soc., 149, A1058 (2002). https://doi.org/10.1149/1.1491235
  18. Q. Xiao and X. Zhou, Electrochim. Acta, 48, 575 (2003). https://doi.org/10.1016/S0013-4686(02)00727-2
  19. V. Khomenko, E. Frackowiak and F. Beguin, Electrochim. Acta, 50, 2499 (2005). https://doi.org/10.1016/j.electacta.2004.10.078
  20. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, J. Power Sources, 153, 413 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.030
  21. B. Dong, B.L. He, C.L. Xu and H.L. Li, Mater. Sci. and Eng. B, 143, 7 (2007). https://doi.org/10.1016/j.mseb.2007.06.017
  22. S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. MacFarlane, M. Forsyth and D.W. Kim, J. Power Sources, 171, 1062 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.103
  23. J. Oh, M.E. Kozlov, B.G. Kim, H.K. Kim, R.H. Baughman and Y.H. Hwang, Synth. Met., 158, 638 (2008). https://doi.org/10.1016/j.synthmet.2008.04.007
  24. X. Lin and Y. Xu, Electrochim. Acta, 53, 4990 (2008). https://doi.org/10.1016/j.electacta.2008.02.020
  25. J.Y. Kim, K.H. Kim and K.B. Kim, J. Power Sources, 176, 396 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.117
  26. S. Cosnier and M. Holzinger, Electrochim. Acta, 53, 3948 (2008). https://doi.org/10.1016/j.electacta.2007.10.027
  27. S. Paul and M. Joseph, Sens. Actuators B, 140, 439 (2009). https://doi.org/10.1016/j.snb.2009.04.043
  28. C. Masarapu, H.F. Zeng, K.H. Hung and B. Wei, ACS Nano, 3, 2199 (2009). https://doi.org/10.1021/nn900500n
  29. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros and F. Beguin, Chem. Phys. Lett., 361, 35 (2002). https://doi.org/10.1016/S0009-2614(02)00684-X

Cited by

  1. Electrochemical preparation and characterization of a polypyrrole/nickel-cobalt hexacyanoferrate nanocomposite for supercapacitor applications vol.5, pp.111, 2015, https://doi.org/10.1039/C5RA17945A
  2. Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors vol.138, 2014, https://doi.org/10.1016/j.electacta.2014.06.089
  3. Fabrication of transition-metal-doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications vol.130, pp.1, 2013, https://doi.org/10.1002/app.39176
  4. Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite vol.20, pp.5, 2014, https://doi.org/10.1016/j.jiec.2013.11.067
  5. Hollow Polypyrrole Films: Applications for Energy Storage Devices vol.159, pp.7, 2012, https://doi.org/10.1149/2.062207jes