• 제목/요약/키워드: conductive efficiency

검색결과 203건 처리시간 0.03초

전계방출광원에서 전도성 입자를 이용한 고효율 형광막 특성 연구 (Study on high efficient phosphor layer using conductive powder particle in field emission light source)

  • 정세정;김광복;이선희;김용원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2007
  • The Light brightness is to enhance the luminescence efficiency of phosphor including conductive material. In preparing the anode layer, phosphors mixed with conductive material prepared with pastes of polymer resin using by screen printing method. When the prepared anode layer bombarded by cold electron from emitter of cathode, it give rise to form the secondary electron from those of conductive materials such as ITO powder. Furthermore, we are expect to enhance the luminescence efficiency more than without conductive material.

  • PDF

전도성 실 재질을 이용한 웨어러블 안테나의 제작 및 분석 (Analysis and fabrication of a wearable antenna using conductive fibers)

  • 티엔만;정재영
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2770-2776
    • /
    • 2015
  • 최근 인체 중심의 근거리, 저전력 무선통신을 이용한 다양한 사물인터넷 어플리케이션이 출현함에 따라 효율적으로 무선에너지를 방사시킬 수 있는 소형 웨어러블 안테나 개발의 필요성이 대두되고 있다. 본 논문에서는 전도성 실로 일상의류에 간편하게 구현할 수 있는 웨어러블 안테나의 특성을 시물레이션 및 측정 결과를 바탕으로 분석하였다. 제안한 안테나는 펠트 천 위에 전도성 실을 직교로 엮은 형태로 구현하였으며 full-wave 전파 시물레이션 툴을 이용한 parametric study를 바탕으로 구조 변화에 따른 안테나 임피던스, 공진 주파수 및 방사 효율 등의 변화를 관찰하였다. 그 결과, 안테나 방사효율이 전도성 실 사이 간격이 0.25mm에서 3mm로 증가함에 따라 67.5%에서 70.4%로 증가함을 확인하였다. 이를 통해 적은 양의 전도성 실 재질을 이용해도 좋은 방사효율의 안테나를 구현할 수 있다는 결론을 도출할 수 있다. 실제 제작된 안테나를 통해 구한 측정값도 유사한 경향을 보였다.

대용량 무선전력전송 환경 인근 메쉬구조 도전부 유도현상 특성 분석 (Characteristic Analysis of Induction Phenomena in the Nearby Mesh Structure Conductive Part of Large Capacity Wireless Power Transmission System)

  • 채동주;이건호;임현성;조성구
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.207-214
    • /
    • 2019
  • A large-capacity wireless power system is a technology that transmits electric power of kW or more in a noncontact type. Electric cars, electric buses, and electric railways. In order to increase the power transmission efficiency, a resonance method using a frequency of kHz is applied and the efficiency is 80 ~ 90%. In this case, the loss is 10 ~ 20% other than efficiency, and corresponds to several hundreds of W to several kW in kW class wireless power transmission. 35 kW wireless feed system environment, and induced current in the nearby conductive part was measured. As a result of analysis, it was confirmed that induction phenomenon is higher as the loop configuration of the conductive part per area is dense. The increase of the induced current in the mesh loop is characterized by the density of the nearby conductive part having a permeability per unit area. The concentration of the magnetic field by the permeability is increased and the induction phenomenon causing the induction current is increased. It was confirmed that induction phenomenon increases by about 2.7 times when 9 times dense structure is formed.

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

Fabrication of Organic Photovoltaics Using Transparent Conductive Films Based on Graphene and Metal Grid

  • Kim, Sung Man;Walker, Bright;Seo, Jung Hwa;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.441-441
    • /
    • 2014
  • The characteristics of hybrid conductive films based on multilayer graphene and silver grid have been investigated for the high-performance and flexible organic solar cells. The hybrid conductive films have been prepared on glass and polyethylene terephthalate (PET) substrates using conventional photolithography process and transfer process of graphene. The optical and electrical properties of prepared conductive films show transmittance of 87% at 550nm and sheet resistance of $28{\Omega}/square$. The electromechanical properties were also investigated in detail to confirm the flexibility of the hybrid films. OSCs have been fabricated on the hybrid conductive films based on graphene and silver grid on glass substrate. The power conversion efficiency of 2.38%, a fill factor of 51%, an open circuit voltage of 0.58V and a short circuit current of $8.05mA/cm^2$ were obtained from the device on glass substrate. The PCE was enhanced 11% compared with OSCs on the MLG films without silver grid.

  • PDF

도전재 종류에 따른 리튬이차전지 음극재 SiOx의 전기화학적 특성 (Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries)

  • 연지수;장보윤;김성수;김향연
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.179-186
    • /
    • 2019
  • This work investigated the effects of different conductive agents on the electrochemical properties of anodes. SiOx possesses high theoretical capacity and shows excellent cycle performance; however, the low initial coulombic efficiency and poor electrical conductivity limit its applications in real batteries. In this study, electrodes were fabricated using two different conductive agents, and the resulting physical and electrochemical properties were analyzed. SEM observations confirmed the formation of a CNT conductive network throughout the electrodes, while the electrical conductivity contributed to the electrode was confirmed by impedance measurements. Thus, the electrode fabricated with the CNT conductive agent showed greater capacity and superior cycle performance than did the electrode fabricated using the DB conductive agent.

한국산(韓國産) 산공재(散孔材)의 해부학적(解剖學的) 특성(特性)에 관한 비교연구(比較硏究)(I) -단순상관(單純相關)과 주성분(主成分) 분석(分析)에 의한 특성(特性)- (Comparative Anatomy of Diffuse-Porous Woods Grown in Korea (I) -Characteristics by Simple Correlation and Principal Component Analysis-)

  • 정연집;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.46-53
    • /
    • 1995
  • The anatomy of Korean diffuse-porous woods, 36 families, 75 genera, 145 species, 215 specimens was described and analyzed. Sixteen wood anatomical characters, habit and phenology factors were determined by simple correlation and principal component analysis. Strong positive correlations were found between vessel element length and fiber length, ray width and ray height, simple pits of fiber wall and paratracheal parenchyma distribution. The results of principal component analysis (PCA) disclose the primitive characteristics and the direction of xylem evolution of Korean diffuse-porous woods. The xylem evolution scenario for Korean dicotyledonous woods is considered to be developed in the direction of decreasing trends of vessel frequency, vessel element length, and length/diameter(L/D) ratio of vessel element but increasing trends of vessel diameter, fiber length/vessel element length(F/V) ratio, libriform wood fibers, simple perforation, and homogeneous ray composition. Increase of vessel diameter and decrease of vessel frequency seem to be related to the improvement of conductive efficiency, and increase of the vessel element length and occurrence of scalariform perforation in vessel element may be related to enhanced of conductive safety. Also the libriform wood fibers and ray features appear to have relationship with mechanical support and nutrient metabolism, respectively.

  • PDF

자성 페라이트 용사피막의 전자파 차폐 특성 (Electromagnetic Wave Shield Characteristics of Thermal Sprayed Ferrite Coatings)

  • 정태식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.76-82
    • /
    • 2002
  • In these days, many advanced nations have enforced import restrictions against things emitting electromagnetic wave which has report that it is so harmful. In general, electromagnetic wave is composed of electric wave and magnetic wave. The reflection of electromagnetic wave is mainly reflected by conductive materials and the magnetism loss is generated by magnetic ferrite. The magnetism loss of ferrite is separated by eddy current loss, residual magnetism loss and hysteresis loss. Thermal sprayed coating is intended to manufacture because of simple processes and high efficient electromagnetic wave shielding. The high efficient thermal sprayed coatings were made from the magnetic ferrite materials that characterizes absorption of electromagnetic wave, and the electric conductive materials that characterize emitting of electromagnetic wave. This study was manufactured thermal sprayed coatings to improve absorption-efficiency, and measured the electromagnetic wave shielding efficiency. As the experimental results, high electromagnetic wave shield efficiency was obtained at wave frequency 2GHz to thermal sprayed ferrite coatings manufactured by size distribution range of spray powders, $38~88\mu\textrm{m}$.

고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구 (Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity)

  • 김창희;장현태;박종세;윤종국;노은섭;박지수;구경완
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구 (A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives)

  • 전다영;손형진;문지연;조성현;김성현
    • Current Photovoltaic Research
    • /
    • 제9권2호
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.