DOI QR코드

DOI QR Code

Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries

도전재 종류에 따른 리튬이차전지 음극재 SiOx의 전기화학적 특성

  • Yun, Ji-Su (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jang, Boyun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Hyang-Yeon (EV Components & Materials R&D Group, Korea Institute of Industrial Technology)
  • 연지수 (충남대학교 에너지과학기술대학원) ;
  • 장보윤 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김성수 (충남대학교 에너지과학기술대학원) ;
  • 김향연 (한국생산기술연구원 EV부품소재그룹)
  • Received : 2019.03.08
  • Accepted : 2019.04.01
  • Published : 2019.05.01

Abstract

This work investigated the effects of different conductive agents on the electrochemical properties of anodes. SiOx possesses high theoretical capacity and shows excellent cycle performance; however, the low initial coulombic efficiency and poor electrical conductivity limit its applications in real batteries. In this study, electrodes were fabricated using two different conductive agents, and the resulting physical and electrochemical properties were analyzed. SEM observations confirmed the formation of a CNT conductive network throughout the electrodes, while the electrical conductivity contributed to the electrode was confirmed by impedance measurements. Thus, the electrode fabricated with the CNT conductive agent showed greater capacity and superior cycle performance than did the electrode fabricated using the DB conductive agent.

Keywords

JJJRCC_2019_v32n3_179_f0001.png 이미지

Fig. 1. X-ray diffraction (XRD) patterns of (a) SiOx nanoparticles and (b) SiOx with conductive agents.

JJJRCC_2019_v32n3_179_f0002.png 이미지

Fig. 2. SEM images of (a) SiOx nanoparticles, (b) SiOx with denka black (DB), and (c) SiOx with carbon nanotubes (CNT).

JJJRCC_2019_v32n3_179_f0003.png 이미지

Fig. 3. Charge-discharge profiles and corresponding dQ/dV plots of SiOx with DB or CNT conductive agents at (a), (b) 1st and 2nd cycles (0.21 A/g charge).

JJJRCC_2019_v32n3_179_f0004.png 이미지

Fig. 4. (a) Cycle performance and (b) coulombic efficiency of SiOx with DB or CNT conductive agents.

JJJRCC_2019_v32n3_179_f0005.png 이미지

Fig. 5. (a) Schematic representation of changes in DB loaded anodes and (b) schematic representation of changes in CNT loaded anodes.

JJJRCC_2019_v32n3_179_f0006.png 이미지

Fig. 6. Charge-discharge profiles of SiOx with (a) DB (b) CNT conductive agents at various current densities, and (c) rate capability of SiOx with DB or CNT conductive agents.

JJJRCC_2019_v32n3_179_f0007.png 이미지

Fig. 7. (a) Electrochemical impedance spectroscopy (EIS) of iOx with DB and CNT conductive agents and (b) equivalent circuits used ti fit the impedance data.

Table 1. Electrical resistivities of two kinds of conductive agents and the corresponding composite cathodes (10-2 Ω).

JJJRCC_2019_v32n3_179_t0001.png 이미지

Table 2. Electrical resistivities of two kinds of conductive agents and the corresponding composite SiOx.

JJJRCC_2019_v32n3_179_t0002.png 이미지

References

  1. J. Lee, J. Koo, B. Jang, and S. Kim, J. Power Sources, 329, 79 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.035]
  2. L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, ACS Nano, 4, 3671 (2010). [DOI: https://doi.org/10.1021/nn100619m]
  3. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). [DOI: https://doi.org/10.1038/35104644]
  4. T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, J. Electrochem. Soc., 142, 3297 (1995). [DOI: https://doi.org/10.1149/1.2049977]
  5. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater., 10, 725 (1998). [DOI: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z]
  6. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, J. Electrochem. Soc., 149, A1598 (2002). [DOI: https://doi.org/10.1149/1.1518988]
  7. M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, J. Power Sources, 26, 545 (1989). [DOI: https://doi.org/10.1016/0378-7753(89)80176-4]
  8. U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources, 163, 1003 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.09.084]
  9. J. Yin, M. Wada, K. Yamamoto, Y. Kitano, S. Tanase, and T. Sakai, J. Electrochem. Soc., 153, A472 (2006). [DOI: https://doi.org/10.1149/1.2160429]
  10. Z. P. Guo, J. Z. Wang, H. K. Liu, and S. X. Dou, J. Power Sources, 146, 448 (2005). [DOI: https://doi.org/10.1016/j.jpowsour.2005.03.112]
  11. B. Liang, Y. Liu, and Y. Xu, J. Power Sources, 267, 469 (2014) [DOI: https://doi.org/10.1016/j.jpowsour.2014.05.096]
  12. M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J. S. Moreno, Electrochem. Solid-State Lett., 6, A75 (2003). [DOI: https://doi.org/10.1149/1.1563094]
  13. U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources, 163, 1003 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.09.084]
  14. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moon, and C. W. Park, J. Power Sources, 188, 574 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.137]
  15. Y. Liu, Z. Y. Wen, X. Y. Wang, A. Hirano, N. Imanishi, and Y. Takeda, J. Power Sources, 189, 733 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.08.016]
  16. C. H. Doh, H. M. Shin, D. H. Kim, Y. C. Ha, B. S. Jin, H. S. Kim, S. I. Moon, and A. Veluchamy, Electrochem. Commun., 10, 233 (2008). [DOI: https://doi.org/10.1016/j.elecom.2007.11.034]
  17. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, J. Electrochem. Soc., 152, A2089 (2005). [DOI: https://doi.org/10.1149/1.2013210]
  18. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, and O. Yamamoto, Solid State Ionics, 152, 125 (2002). [DOI: https://doi.org/10.1016/S0167-2738(02)00362-4]
  19. M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roue, Energy Environ. Sci., 6, 2145 (2013). [DOI: https://doi.org/10.1039/C3EE41318G]
  20. M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, and X. Feng, J. Power Sources, 288, 53 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2015.04.127]
  21. J. Wang, H. Zhao, J. He, and C. Wang, J. Power Sources, 196, 4811 (2011). [DOI: https://doi.org/10.1016/j.jpowsour.2011.01.053]
  22. M. Yamada, A. Ueda, K. Matsumoto, and T. Ohzuku, J. Electrochem. Soc., 158, A417 (2011). [DOI: https://doi.org/10.1149/1.3551539]
  23. Q. Si, K. Hanai, T. Ichikawa, M. B. Phillipps, A. Hirano, N. Imanishi, O. Yamamoto, and Y. Takeda, J. Power Sources, 196, 9774 (2011). [DOI: https://doi.org/10.1016/j.jpowsour.2011.08.005]
  24. W. R. Liu, Y. C. Yen, H. C. Wu, M. Winter, and N. L. Wu, J. Appl. Electrochem., 39, 1643 (2009). [DOI: https://doi.org/10.1007/s10800-009-9854-x]
  25. M. Miyachi, H. Yamamoto, and H. Kawai, J. Electrochem. Soc., 154, A376 (2007). [DOI: https://doi.org/10.1149/1.2455963]
  26. X. Yang, Z. Wen, X. Xu, B. Lin, and S. Huang, J. Power Sources, 164, 880 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.11.010]
  27. P. Novak, W. Scheifele, M. Winter, and O. Haas, J. Power Sources, 68, 267 (1997). [DOI: https://doi.org/10.1016/S0378-7753(96)02561-X]
  28. H. Zheng, R. Yang, G. Liu, X. Song, and V. S. Battaglia, J. Phys. Chem. C, 116, 4875 (2012). [DOI: https://doi.org/10.1021/jp208428w]
  29. Y. H. Chen, C. W. Wang, G. Liu, X. Y. Song, V. S. Battaglia, and A. M. Sastry, J. Electrochem. Soc., 154, A978 (2007). [DOI: https://doi.org/10.1149/1.2767839]
  30. C. W. Wang, K. A. Cook, and A. M. Sastry, J. Electrochem. Soc., 150, A385 (2003). [DOI: https://doi.org/10.1149/1.1543566]
  31. Q. Zhang, Z. Yu, P. Du, and C. Su, Recent Pat. Nanotechnol., 4, 100 (2010). [DOI: https://doi.org/10.2174/187221010791208803]
  32. X. Zhang, J. Ma, and K. Chen, Nano-Micro Lett., 7, 360 (2015). [DOI: https://doi.org/10.1007/s40820-015-0051-7]
  33. J. E. Lee, J. B. Koo, B. Y. Jang, and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 255 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.4.255]
  34. B. Lee, J. Y. Lee, B. Jang, J. Kim, and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 70 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.70]
  35. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, J. Power Sources, 329, 462 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.110]
  36. M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, and H. Yoneyama, J. Electrochem. Soc., 144, 1923 (1997). [DOI: https://doi.org/10.1149/1.1837722]
  37. G. Wang, Q. Zhang, Z. Yu, and M. Qu, Solid State Ionics, 179, 263 (2008). [DOI: https://doi.org/10.1016/j.ssi.2008.01.015]
  38. J. Y. Lee, B. Lee, N. W. Kim, B. Jang, J. Kim, and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 78 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.78]
  39. J. Shu, H. Li, R. Yang, Y. Shi, and X. Huang, Electrochem. Commun., 8, 51 (2006). [DOI: https://doi.org/10.1016/j.elecom.2005.08.024]