• 제목/요약/키워드: conditions for optimal analysis

검색결과 1,680건 처리시간 0.032초

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Characteristics of Complex Foaming Composites' Normal Pressure Foaming of Using Rubber and Bio-Degradable Materials

  • Dong Hun Han;Young Min Kim;Dan Bi Lee;Kyu Hwan Lee;Han-Seong Kim
    • 한국재료학회지
    • /
    • 제33권8호
    • /
    • pp.323-329
    • /
    • 2023
  • There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.

가접부를 고려한 필릿 용접조건의 선정에 관한 연구 (A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds)

  • 이준영;김재웅;김철희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.304-306
    • /
    • 2006
  • Positioning the workpiece accurately and preventing the weld distortion, tack welding is often performed before main welding in the construction of welded structures. The weld bead size of the tack weld is determined according to the workpiece thickness, weld length, weld joint type etc. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually adopted for the uniform weld bead profile. In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method uses the response surface analysis in which the leg length and the reinforcement height of weld bead were chosen as the quality variables of weld bead profile. The overall desirability function, which was combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. From the result, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

  • PDF

무인헬기용 티타늄 합금 로터 그립의 열간성형해석 (Hot Forging Analysis of Rotor Grip with Titanium Alloy for Unmanned Helicopter)

  • 이성철;공재현;허관도
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.96-103
    • /
    • 2011
  • Rotor grip is used as a component of rotor system in unmanned helicopter. Instead of usual machining, hot forging process has been considered to improve its proof stress against repeated loading conditions and crash in the farm-field. Die design and forming analysis have been performed according to the conditions such as billet volume, flash, cavity filling, and the distribution of damage during the forming by using FE analysis. In the results of analysis, the possibility of structural failure in the model has not been found because its maximum effective stress is much lower than yield strength of the titanium alloy. In the forging die design, flash has been allowed because of low production in the industrial field. Preform design was studied by using FE-analysis, and its optimal dimension was obtained in the hot forging of rotor grip with titanium alloy.

종곡선/평면곡선 경합여부에 따른 최적평면선형조건 및 승차감 비교 분석 (Comparative Study on Ride Comfort and Optimum Horizontal Curve Conditions for Superimposition of Vertical and Horizontal Curve)

  • 엄주환;최일윤;양신추;이일화;김만철
    • 한국철도학회논문집
    • /
    • 제13권6호
    • /
    • pp.589-594
    • /
    • 2010
  • 철도에서 평면곡선과 종곡선의 경합은 승차감 및 열차의 주행안전성을 저해시키는 원인이 되며, 유지보수비용에도 큰 영향을 미친다. 그러나 철도노선 계획 시 지형조건 및 예기치 않은 환경적 요인에 의해 선형경합이 필요하게 될 경우가 발생된다. 본 연구에서는 종곡선과 평면곡선의 경합이 곡선부에서의 승차감 및 평면곡선의 최적선형조건에 미치는 영향을 파악하고자 하였다. 이를 위해 평면곡선과 종곡선이 경합하였을 경우와 경합하지 않고 평면선형만 있을 경우에 대한 최적캔트량 및 승차감을 비교분석 하였으며, 고속영역에서 선형 경합이 곡선선형조건과 승차감에 미치는 영향을 검토하였다. 그 결과 경합한 경우라도 보정캔트를 부설한다면 승차감 측면에서 평면선형만 부설한 경우와 유사한 조건이 될 수 있음을 알 수 있었다.

Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat

  • Dong-Min Shin;Jong Hyeok Yune;Dong-Hyun Kim;Sung Gu Han
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1596-1603
    • /
    • 2023
  • Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition. Methods: Duck breast meat (Anas platyrhynchos) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50℃ to 80℃) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed. Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60℃ increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of Escherichia coli and Coliform only in the samples cooked at 50℃ and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time. Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60℃ for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.

최적화 기법을 이용한 요트 계류장 입지분석에 관한 연구 (The study On An Yacht Moorings Establishment Location Analysis Using Optimum Spiral Method)

  • 박성현;주기세
    • 해양환경안전학회지
    • /
    • 제17권4호
    • /
    • pp.323-329
    • /
    • 2011
  • 본 연구는 최대의 효과를 달성하기 위하여 정수 계획법을 이용하여 주어진 자연조건하에서 여러 대안 후보 입지 중 최적의 요트 계류장을 결정 하기위한 문제이다. 목포시 인근의 4개의 요트 계류장 후보지 중 최적의 후보지를 선정하기 위하여 21개의 요소들이 각각의 후보지들에 대하여 분석된다. 총 21개 요소들 중 개발 기간과 초기 투자비용은 다음 요소들에 비해서 1.5배의 가중치를 갖는다. 가중치 선형모델 분석 결과 네 곳의 후보지중 평화광장 수역이 가장 합리적인 장소로 선정되었다. 본 논문에서 소개된 모델은 지금까지 요트 계류장 선정 시 적용된 적이 없는 새로운 방법이다. 본 논문은 가장 합리적인 위치를 결정하는데 공헌할 뿐만 아니라 마리나 관련된 다른 분야에도 응용 적용가능하다.

칼코겐유리렌즈 압축성형 시 표면결함을 고려한 가열조건 최적화 (Optimization of Heating Conditions for Compression Molding of Chalcogenide Glass Lenses Based on Surface Defects)

  • 손병래;안준형;이영환;황영국
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.60-66
    • /
    • 2021
  • This study aimed at identifying and optimizing the heating-condition parameters that cause surface defects during the compression molding of chalcogenide glass (GeSbSe) lenses through thermal analysis. We derived the optimal heating conditions for molding chalcogenide glass lenses through thermal analysis and analyzed the surface defects. As a result, we observed a significant reduction in surface defects, which verified the analysis process.

TiB$_2$ 인서트를 체결한 열간압출 금형설계 및 제작 (Die Design for the Hot Extrusion with TiB$_2$Insert)

  • 권혁홍;이정로
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.118-124
    • /
    • 2002
  • The use of ceramic inserts in hot extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper, process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The shrink fit analysis has been performed that enables optimal design of the dies taking into account the elastic deflections which generated in shrink fitting the die inserts and that caused by the stresses generated in the process and by using DEFORM software for process analysis. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the die design. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. The results are compared with the experimental ones for verification.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.