• Title/Summary/Keyword: condensation method

Search Result 572, Processing Time 0.027 seconds

Approximate Solutions for Laminar Film Condensation on a Flat Plate (평판에서 층류 막응축의 근사해)

  • Lee, S.H.;Kweon, J.Y.;Lee, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.215-221
    • /
    • 1991
  • Laminar film condensation of a saturated vapor in forced flow over a flat plate is analyzed by using integral method. Laminar condensate film is so thin that the inertia and thermal convection terms in liquid flow can be neglected. Approximate solutions for water are presented and well agreed with the similarity solutions over the wide range of physical parameter, Cp1(Ts-Tw)/Pr.hfg. For the strong condensation case, it is found that magnitude of the interfacial shear stress at the liquid-vapor interphase boundary is approximately equal to the momentum transferred by condensation, i.e., ${\tau}_i{\simeq}\dot{m}(U_O-U_i)$.

  • PDF

Development of Analytical Tool for Checking Condensation of High-Rise Apartment Using CFD & TDR (CFD와 TDR을 이용한 고층 공동주택의 결로 판정 도구 개발)

  • Pang, Seung Ki;Kim, Chul Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.4
    • /
    • pp.15-24
    • /
    • 2013
  • On this Thesis, We conduct a research of curtain wall high-rise apartment located in Songdo for preparing a simple method to check possibility of condensation on each part of curtain wall using only indoor temperature, humidity and outdoor temperature. According to CFD analysis result, condensation occurred if indoor environment did not ventilated. On the other hand, in case of ventilation on indoor environment, condensation did not appear; so I could find ventilation prevent surface condensation on inside surface of curtain wall. Moreover, when temperature of the floor is higher, condensation is decrease more than lower floor temperature.

Study on the Structural System Condensation using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.356-361
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

  • PDF

Dynamic Condensation using Iterative Manner for Structural Eigenproblem with Nonproportional Damping (비비례 감쇠 구조의 고유치 문제에 대한 반복적인 동적 축소법)

  • Cho, Maeng-Hyo;Choi, Dong-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.342-349
    • /
    • 2008
  • A selection method of primary degrees of freedom in dynamic condensation for nonproportional damping structures is proposed. Recently, many dynamic condensation schemes for complex eigenanalysis have been applied to reduce the number of degrees of freedom. Among them, iterative scheme is widely used because accurate eigenproperties can be obtained by updating the transformation matrix in every iteration. However, a number of iteration to enhance the accuracy of the eigensolutions may have a possibility to make the computation cost expensive. This burden can be alleviated by applying properly selected primary degrees of freedom. In this study, which method for selection of primary degrees of freedom is best fit for the iterative dynamic condensation scheme is presented through the results of a numerical experiment. The results of eigenanalysis of the proposed method is also compared to those of other selection schemes to discuss a computational effectiveness.

  • PDF

Construction and Evaluation of Oxidation System for Superconductor Thin Film (초전도 박막 제작을 위한 산화 시스템 구축 및 평가)

  • 임중관;박용필;송경용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.163-167
    • /
    • 2003
  • Ozone is strong and useful oxidizing gas for the fabrication of oxidation thin films. In order to obtain high quality thin film, the ozone concentration must be increased. An ozone condensation system is evaluated in the viewpoint of an ozone supplier for oxidation thin film growth. Ozone is condensed by the adsorption method and ozone concentration reaches 8.5 mol% by 2.5 h after the beginning of the ozone condensation is negligible if the condensed ozone is transferred between the ozone condensation system and the film growth chamber within a few minutes. CuO peak which is the result of the obtained Cu-films using condensed ozone appears by XRD patterns.

The Influence of Variable Thermophysical Properties for Filmwise Condensation of Superheated Vapor on a Vertical Wall (수직 벽에서 과열증기의 막응축에 대한 열물성의 영향)

  • 김경훈;성현찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A theoretical model for laminar filmwise condensation along an isothermal vertical wall at constant pressure has been formulated on the basis of conservation laws and other fundamental physical principles. The model was applied to the prediction of the influences of variable thermophysical properties of liquid and vapor layers in the filmwise condensation of superheated vapor of Rl2, R134a, R142b and R152a. The dimensionless velocity component method was employed in the transformation of the governing equations and their boundary conditions, and the polynomial method was used for treating variable thermophysical properties of liquid and vapor. Physical quantities, such as the dimensionless thickness of the liquid layer, local heat transfer rate and mean heat transfer coefficient, were investigated for different values of the superheated temperature of the stagnant vapor far from the wall. It was found that the value of mean heat transfer coefficient of R134a was higher than other refrigerants for the change of the superheated temperature.

  • PDF

Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle (초음속 노즐에서 발생하는 응축충격파 진동의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

Study on the Improvement Plans of Condensation Defect Examples in Apartment Building (공동주택 결로 하자 사례를 통한 개선방안 도출)

  • Oh, Se Min;Park, Sun Hyo;Joung, Kwang Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • There are main issues of defect type that condensation, concrete crack and noise in apartment buildings. Especially, according to the Apartment Defect Dispute Mediation Committee in Korea (ADDMC) at Ministry of Land Infrastructure and Transport in Korea (MLIT), condensation defects are great importance (14 percent) on whole number of reported cases of faults from 2015 in Korea. Most condensation defects have many different causes that take a toll on the resident's life and space. So it is very important to early detection and repair. For preventing the condensation in apartment buildings, there are building codes in Korea such as 'Standard of Method and Judgment for Apartment defect of investigation, Repair cost Estimate'. This research aims to study on the improvement of preventing the condensation aforementioned korea standard. Types and characteristics (opaque wall, windows, doors) of cause of occurrence and existing state condensation defect is analyzed from evaluation of real application 100 case in 2015 ADDMC data.

Evaluation of Oxidation System for Metal Oxide Thin Film (금속 산화물 박막 제작을 위한 산화 시스템의 평가)

  • 임중관;김종서;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.590-593
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Crone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

Condensation Prevention Performance Assessment Taking Into Account Thermal Insulation Performance Degradation Due to Aging for Apartment Housing

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • Purpose: The current study analyzed trends in thermal insulation performance with aging, and condensation characteristics caused by the former. Method: Thermal insulation and condensation prevention performance of an architecture were assessed using Temperature Difference Ration Inside, or TDRi. Subjects of this quantitative analysis in thermal insulation performance change due to aging included recently constructed apartments and aged apartments older than 40 years. Time series comparison and analysis were conducted to observed changes in the thermal insulation performance and condensation characteristics. Result: Analysis showed that wall insulation performance degraded with aging regardless of fortified insulating material usage or insulating material type, which caused increased danger of condensation. In addition, when fortified insulating material was installed on the connection between the walls, insulation performance degradation was lower compared to cases in which fortified materials were not used. In all cases from 1 to 10, the rate of thermal insulation performance degradation increased after 20 years of aging.