• Title/Summary/Keyword: concrete-steel interfaces

Search Result 29, Processing Time 0.023 seconds

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate (강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성)

  • 박윤제;신동혁;이광명;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Both strength and stiffness of RC structures strengthened by a steel plate greatly increase and however, their ductility might not be sufficient because premature failures usually occur at the adhesive-concrete interface. In this study, Mohr-Coulomb criterion was adopted to examine the bonding failure mechanism, and the diagonal shear bonding test, the direct shear bonding test, and the flexural test on RC beams strengthened by a steel plate were carried out to measure the bonding properties. It is found from the experimental and numerical results that the cohesive strengths of epoxy-concrete interfaces are ranging from 50 kgf/㎠ to 70 kgf/㎠ when the friction angle is 45°. Bonding failure loads can be predicted by applying the bonding properties to the structural analysis of RC beams strengthened by steel plate. By considering them in the design of strengthened beams, the premature failure would be effectively prevented.

The effects of different FRP/concrete bond-slip laws on the 3D nonlinear FE modeling of retrofitted RC beams - A sensitivity analysis

  • Lezgy-Nazargah, M.;Dezhangah, M.;Sepehrinia, M.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 2018
  • The aim of this paper is to evaluate the accuracy and reliability of the available bond-slip laws which are being used for the numerical modeling of Fiber Reinforced Polymer (FRP)/concrete interfaces. For this purpose, a set of Reinforced Concrete (RC) beams retrofitted with external FRP were modeled using the 3D nonlinear Finite Element (FE) approach. All considered RC beams have been previously tested and the corresponding experimental data are available in the literature. The failure modes of these beams are concrete crushing, steel yielding and FRP debonding. Through comparison of the numerical and experimental results, the effectiveness of each FRP/concrete bond-slip model for the prediction of the structural behavior of externally retrofitted RC beams is assessed. The sensitivity of the numerical results against different modeling considerations of the concrete constitutive behavior and bond-slip laws has also been evaluated. The results show that the maximum allowable stress of FRP/concrete interface has an important role in the accurate prediction of the FRP debonding failure.

Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries

  • Silva, Ana B.C.G.;Andrade, Henrique C.C.;Fairbairn, Eduardo M.R.;Telles, Jose C.F.;Ribeiro, Fernando L.B.;Toledo-Filho, Romildo D.;Medeiros, Jorivaldo
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • This work presents a numerical modeling procedure to simulate the refractory concrete lining in fluid catalytic cracking units of oil refineries. The model includes the simulation of the anchors that reinforce the contact between the refractory concrete and the steel casing. For this purpose, the constitutive relations of an interface finite element are set to values that represent the homogenized behavior of the anchored interface. The parameters of this constitutive relation can be obtained by experimental tests. The model includes also multi-surface plasticity, in order to represent the behavior of the refractory concrete lining. Since the complexity of real case applications leads to high computational costs, the models presented here were implemented in a high-performance parallelized finite element platform. A case study representing a riser similar to the ones used by the refinery industry demonstrates the potential of the model.

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera;Gustavo Ayala Milian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

Shear Transfer in Normal and High Strength Concrete (보통강도 및 고강도 콘크리트의 전단전달)

  • Oh Byung Hwan;Kim Kwang Soo;Lee Jong Hoon;Han Seung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.585-590
    • /
    • 2001
  • Cracks in concrete can submit shear forces by virtue of the roughness of their interfaces. With regard to this roughness, the crack faces play an important role. By transmitting normal and shear stress across their faces, shear cracks contribute to shear resistance. This process is called shear transfer or more generally, shear friction. Both experimental and analytical program to investigate shear transfer mechanism in normal and high strength concrete were included in this study. The parameters investigated in push-off test included the concrete strength, the presence and amounts of steel stirrups, and aggregate size. Solution procedure based on the truss model was developed to analyze the shear transfer behavior. In general, it can be seen that the analytical results agree well with results of shear transfer test.

  • PDF

Modeling of Noncomposite Skew Plate Girder Bridges (비합성형 판형사교의 모형화)

  • Moon, Seong-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-510
    • /
    • 2008
  • The design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the effects of interactions between the concrete deck and steel girders such as composite construction, and noncomposite construction on the dynamic characteristics of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The slip at the interfaces between the concrete deck and steel girders may bring about longer vibration periods that result in the reduced total seismic base shear.

  • PDF

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.