• Title/Summary/Keyword: concrete-steel interaction

Search Result 250, Processing Time 0.024 seconds

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns (중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Jong Sung;Oh, Yun Tae;Kwon, Young Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

Non-constant biaxial bending capacity assessment of CFST columns through interaction diagrams

  • Espinos, Ana;Albero, Vicente;Romero, Manuel L.;Mund, Maximilian;Meyer, Patrick;Schaumann, Peter
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.521-536
    • /
    • 2019
  • The mechanical response of concrete-filled steel tubular (CFST) columns subjected to pure compression or uniaxial bending was studied in depth over the last decades. However, the available research results on CFST columns under biaxial bending are still scarce and the lack of experimental tests for this loading situation is evident. At the same time, the design provisions in Eurocode 4 Part 1.1 for verifying the stability of CFST columns under biaxial bending make use of a simplistic interaction curve, which needs to be revised. This paper presents the outcome of a numerical investigation on slender CFST columns subjected to biaxial bending. Eccentricities differing in minor and major axis, as well as varying end moment ratios are considered in the numerical model. A parametric study is conducted for assessing the current design guidelines of EN1994-1-1. Different aspect ratios, member slenderness, reinforcement ratios and load eccentricities are studied, covering both constant and variable bending moment distribution. The numerical results are subsequently compared to the design provisions of EN1994-1- 1, showing that the current interaction equation results overly conservative. An alternative interaction equation is developed by the authors, leading to a more accurate yet conservative proposal.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Deterioration of Concrete Columns under Sea-Water and Strengthening Analysis (해수중 콘크리트 기둥의 열화 및 보강성능해석)

  • 김규엽;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1169-1174
    • /
    • 2001
  • In this study, the behavior of deteriorated concrete columns under sea-water before and after strengthening with glass fiber composite and the change of behavior by the deterioration of strengthening material are analyzed. In the analysis, the characteristics of concrete deteriorated in sea-water, preloading effect, and corrosion of steel are considered. The result of analysis is verified by the comparison with the experimental data. Using constitutive equations of the concrete and corroded steel, load-moment interaction curves of both deteriorated and strengthened concrete column are derived.

  • PDF

Analytical model for high-strength concrete columns with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.295-316
    • /
    • 2008
  • In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by means of the variation in the elastic modulus and in the Poisson's coefficient. Complete stress-strain curves in compression of confined concrete core are obtained considering the variation of the axial forces in the leg of the stirrup during the loading process. The model was compared with some others presented in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown that the model allows one to include the main parameters governing the confinement problems of high strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.