• 제목/요약/키워드: concrete-steel interaction

Search Result 250, Processing Time 0.02 seconds

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects (구속 효과를 고려한 원형 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Influence of Loading on the Corrosion of Reinforcing Bar (철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구)

  • 김형래;윤상천;지남용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

Numerical Study on the Joints between Precast Post-Tensioned Segments

  • Kim, Tae-Hoon;Kim, Young-Jin;Jin, Byeong-Moo;Shin, Hyun-Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.3-9
    • /
    • 2007
  • This paper presents a numerical procedure for analyzing the joints between precast post-tensioned segments. A computer program for the analysis of reinforced concrete structures was run for this problem. Models of material nonlinearity considered in this study include tensile, compressive and shear models for cracked concrete and a model for reinforcing steel with smeared crack. An unbonded tendon element based on the finite element method, that can describe the interaction between the tendon and concrete of prestressed concrete member, was experimentally investigated. A joint element is newly developed to predict the inelastic behavior of the joints between segmental members. The proposed numerical method for the joints between precast post-tensioned segments was verified by comparison of its results with reliable experimental results.

Experimental study on vibration serviceability of steel-concrete composite floor

  • Cao, Liang;Liu, Jiepeng;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.711-722
    • /
    • 2020
  • In this study, on-site testing was carried out to investigate the vibration serviceability of a composite steel-bar truss slab with steel girder system. Impulse excitations (heel-drop and jumping) and steady-state motion (walking and running) were performed to capture the primary vibration parameters (natural frequency and damping ratio) and distribution of peak acceleration. The composite floor possesses low frequency (<8.3Hz) and damping ratio (<2.47%). Based on experimental, theoretical, and numerical analyses on fundamental natural frequency, the boundary condition of SCSS (i.e., three edges simply supported and one edge clamped) is deemed more comparable substitutive for the investigated composite floor. Walking and running excitations by one person (single excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor βrp describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking and running excitations is proposed. The comparisons of the modal parameters determined by walking and running tests reveal the interaction effect between the human excitation and the composite floor.

Dynamic characteristics of a high-speed railway steel bridge (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.157-160
    • /
    • 2007
  • The dynamic behavior of a steel bridge crossed by the Korean High Speed Train(KHST) has been investigated experimentally and numerically. The bridge is a 2-girder simply supported steel bridge which has 40m of span length. A set of experimental tests were performed during operation of KHST, and 13 accelerometers and 6 LVDTs were utilized for measurement of dynamic responses. Numerical analyses considering bridge-structure interaction were performed for validation of experimental results. Since structural type and dynamic characteristics of the bridge differ from those of the representative concrete box bridge, dynamic behavior of the concerning steel bridge shows differences, but dynamic performances are all satisfying specification requirements.

  • PDF

Interaction of magnetic water and polypropylene fiber on fresh and hardened properties of concrete

  • Ansari, Mokhtar;Safiey, Amir
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.307-318
    • /
    • 2021
  • Utilizing fibers is an effective way to avoid the brittle behavior of the conventional concrete and can enhance its ductility. In particular, propylene fibers can improve concrete properties, including energy absorption, physical and mechanical properties, controlling shrinkage cracks. The increase of fiber density leads to an increase of the overlapping surface of the fiber of concrete and, in turn, a decrease of cracks developed in the concrete. However, the workability of fiber reinforced concrete tends to be lower than the conventional concrete owing mainly to the hairline thickness and excessive concentration of fibers. The low slump of concrete impedes the construction of reinforced concrete members. In this research, we study if the utilization of magnetic water can alleviate the workability issue of young fiber reinforced concrete. To this end, the compressive and flexural strength of four types of concrete (conventional concrete, fiber reinforced concrete, magnetic concrete, magnetic fiber-reinforced concrete) is studied and compared at three different ages of 7, 14, and 28 days. In order to study the influence of the fiber density and length, a study on specimens with three different fiber density (1, 2, 5 kg of fiber in each cubic meter of concrete) and fiber length (6, 12, 18 mm) is undertaken. The result shows the magnetic fiber concrete can result in an increase of the flexural and compressive strength of concrete at higher ages.

Development of Design Chart for Investigating an Additional Rail Stress and Displacement on CWR(II) - Design Chart for Railway Bridge of Conventional Line (장대레일 부가축력 및 변위 검토를 위한 설계차트 개발(II) - 일반철도 교량 설계차트)

  • Choi, Il-Yoon;Lim, Yun-Sik;Yang, Sin-Chu;Choi, Jin-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.574-581
    • /
    • 2009
  • Displacement of the bridge and additional rail stress due to interaction between track and bridge should be limited to the design criteria. Interaction analysis was conducted to investigate the displacement and additional rail stress on CWR in railway bridge of conventional line. Particularly, various parameters affecting interaction phenomena were taken into account in the analysis to enhance an applicability. These parameters included configuration of structure, stiffness of deck and support, steel/concrete bridge, ballast/concrete track and FM/MFM type etc. The results were presented in the form of the design chart which could be useful in preliminary design of the bridge.