• 제목/요약/키워드: concrete-filled square steel tubular column

검색결과 51건 처리시간 0.017초

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究) (Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns)

  • 김종성;오윤태;권영환
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF

조립각형 CFT 기둥의 용접크기 결정을 위한 수압실험 및 해석 (Water pressure Test and analysis for Welding Thickness Decision of New Cold-formed Type Concrete Filled Tubular Square Column)

  • 이성희;김선희;김영호;최성모
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.515-526
    • /
    • 2009
  • 콘크리트 충전강관에 사용되는 강관의 제작법은 재단된 4장의 플레이트를 모서리에서 용접하는 일반강관 제작법과, ㄷ형으로 절곡성형과정을 거쳐 2-Seam으로 용접하는 제작방법, 그리고 원형강관을 압축하여 4각형태로 만드는 방법등이 일반적으로 사용되며, 강관제작에 사용되는 용접방법과 용접량의 선택은 강관 제작비용에 큰 부분을 차지하고 있다. 새로운 제작형식으로 개발된 각형강관은 4장의 플레이트를 ㄱ형으로 절곡성형한 후 강관 폭의 중앙에서 4-Seam Flare 용접하는 방식이다. 본 연구에서는 새로운 제작형식의 CFT 각형 기둥에 대하여 용접량 평가를 위한 실험방법을 제시하고, 강관 제작법, 강관두께 및 용접량을 변수로 총 6개의 실험체를 제작하여 구조실험 및 해석을 수행하여 강관내부의 수압에 따른 강관의 거동을 평가하였다.

콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구 (An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete)

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.55-63
    • /
    • 2006
  • 본 논문은 콘크리트 충전 원형 및 각형 합성 강관을 기둥부재로서의 적합성 및 적용성을 위한 연구로 두개의 강관을 합성한 콘크리트 충전 강관 기둥의 축압축 좌굴내력 및 변형형상에 대한 실험적 연구이다. 강관 기둥에 대한 연구는 콘크리트 충전 원형 강관 기둥, 콘크리트 충전 각형 강관 기둥, 콘크리트 충전 합성 강관 기둥으로 분류하여 실험을 수행하였다.

  • PDF

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

앵글을 이용한 콘크리트충전 각형강관기둥-H형강보 접합부의 거동 (Behavior of Concrete-Filled Square Steel Tubular Column to H-Beam Connections using Angles)

  • 이재승;김재건;신경재;문태섭
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.191-199
    • /
    • 1999
  • 본 연구는 중층철골 구조물 공업화방안에 관한 연구의 기초단계로서 앵글과 고력볼트를 사용한 콘크리트충전 각형강관기둥 H형강보 접합부의 구조적 거동을 파악하는데, 그 목적이 있다. 실험은 앵글의 두께를 주요변수로 하여 정적하중 하에 5종류의 시험체에 대해 실행되었다. 내력추정식은 접합부의 강도를 상계정리에 의한 하한값으로 구하는 항복선 이론을 적용하여 제시하였다.

  • PDF

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Steel-Concrete Column의 구조성능에 관한 실험 연구 (An Experimental Study on the Structural Capacities of Steel-Concrete Column)

  • 김성재;박순전;정석창;김상대
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.823-834
    • /
    • 2002
  • Steel-Concrete Column은 H형강의 플랜지 사이에 후프를 용접하고 플랜지 사이의 공간에 콘크리트가 채워진 새로운 합성기둥이다. 본 연구에서는 이 새로운 합성 기둥의 구조성능을 평가하기 위하여 단주압축, 휨, 전단실험을 수행하였다. 각 실험별 실험체들을 순철골 실험체와 철골 콘크리트 실험체로 구성하여 Steel-Concrete Column을 구성하는 철골, 내부 콘크리트, 후프의 내력기여도를 평가할 수 있도록 하였다. 실험결과 Steel-Concrete Column은 $\ulcorner$강구조 한계상태 설계 기준$\lrcorner$ 에 의해 계산된 내력값을 충분히 만족하여 구조부재에 적용 가능하다고 판단된다.