• Title/Summary/Keyword: concrete waste

Search Result 1,098, Processing Time 0.028 seconds

A Review of Porous Media Theory from Woltmans Work to Biots Work

  • Park, Taehyo;Jung, Sochan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous materials has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, classical continuum mechanics cannot explain the behavior of materials with pore spaces, such as concrete, soils and organic materials in waste landfill. For these reasons, porous media theory has been developed in the nineteenth century. Biot had the greatest influence on the development of porous media theory. Biot's work has been referred by many authors in the literature. Development of numerous fundamental equations in porous media theory were made possible due to Biot's work. His contributions made the greatest influence on porous media theory. Therefore, it is highly advantageous to review Biot's publications. This work presents a review of Biot's work. It shows how porous media theory has been developing so far and provides a chance to discuss the contribution of his work to the modern porous media theory.

  • PDF

Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash

  • Verma, Surender K.;Ashish, Deepankar K.;Singh, Joginder
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • The major problem of a coal combustion-based power plant is that it creates large quantity of solid wastes. So, to achieve the gainful use of waste materials and to avoid other environmental problems, this study was undertaken. The quantity of coal ash by-products, particularly coal fly ash and coal bottom ash has been increasing from the coal power plants around the world. The other objective of this study was to explore the possibility of utilization of coal ash in the production of ash bricks. In 15 different mixes, Mix Designation M-1 to M-15, the varying percentages of lime and gypsum were used and sand was replaced with coal bottom ash. Further, it has been noticed that the water absorption and compressive strength of mix M-15 is 13.36% and 7.85 MPa which is better than the conventional bricks. The test results of this investigation show that the prism strength of coal ash masonry prisms was more than that of the conventional bricks.

A Study on the characteristics of baroque in Architecture of Paolo Portogheshi (파올로 포르토게시 건축에 나타난 바로크적 특성 연구)

  • Han, Myoung-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.52-59
    • /
    • 2009
  • In the study will look into how Baroque concepts are expressed in architectural space by analyzing the concepts of Baroque formative vocabularies applied in his architecture through a Spanish architect Paolo Portoghesi. Baroque is regarded as the philosophical thought that means enlargement toward diversity of a firm and fixed trend beyond the concept of a certain epochal form of 16th and 17th century architecture. In addition, it is from the free attitude and the intelligent and formal stereotype, and signifies common conditions more than one style in architecture history. Paolo Portoghesi proposes to express gestalt approach by Baroque precedent in his architecture through plasticity and geometric collision technique. Here, the expression of plasticity means the effect that gives formative rhythm to Baroque curved structures. That is the method to expand the formative possibility by changing various materials such as bricks, concrete, and timbers. Second, the geometric collision technique is the technique to constitute the flat form of overall space through the juxtaposition technique, Baroque symmetrical and homogeneous geometric manipulation technique. Accordingly, this study will overcome Inlimitation of formative monotony and expression of abstraction that modernism architecture has, and examine formative waste and conflicts which may be derived from impractical architectural languages of the concept of excessive disorder or the minimum form. This discussion is considered as the first step to tune balance between productivity and formativeness in modern architecture.

An Experimental Study for Manufacture of High Quality Recycled Aggregate by Heating (가열방법을 이용한 고품질 순환골재 제조를 위한 실험적 연구)

  • Yoo, Sung-Won;Min, Gyeong-Oan;Her, Yoon;Ha, Heon-Jae;Moon, Jae-Heum
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.65-72
    • /
    • 2011
  • The use of waste concrete can resolve the environmental pollution and shortage of natural aggregate. However, recycled aggregate includes substantial amount of cement paste. So, these aggregates are more porous, and less resistant to mechanical actions than natural aggregates. So, recently, the new manufacture processes of high quality recycled aggregates were suggested such as heating and solving to acid liquid. But the method of solving to acid liquid is not economical and produces additional environmental pollution. In this paper, for the purpose of manufacture of high quality recycled aggregates, the heating processes was added to the existing process of recycled aggregates. To find the optimum process, the experiment was performed by using the method of statistical experiment design, and the heating temperatures(4 levels : 300, 450, 600 and $750^{\circ}C$) and heating times(4 levels : 5, 20, 40, 60 minute) were main experimental variables. By the test results, the optimum manufacturing condition of coarse recycled aggregate was $600^{\circ}C$ and 40 minute, and for the fine recycled aggregate, a little heating made a satisfaction to the KS standard quality code.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

Shielding Thickness Calculations for Line Gamma-ray Sources in Regular Geometrical Array (일반적(一般的) 배열(配列)인 선형(線型) 감마선원(線源)의 차폐계산(遮蔽計算))

  • Lee, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.29-32
    • /
    • 1978
  • A shielding calculation has been carried out for a storage vault of $5292(42{\times}42{\times}3)$ waste drums in which the mixed radioactive gamma-emitters are contained. The required ordinary concrete shielding thickness seems to be approximately 50cm. The results in terms of dose rate for polyenergy gammas appear to be considerably higher than those of the averaged energy gamma.

  • PDF

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli;Yang, Zhang;Zhao, Yu;Wu, Xikai;Guan, Xuemao
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • 3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

Database of virtual spectrum of artificial radionuclides for education and training in in-situ gamma spectrometry

  • Yoomi Choi;Young-Yong Ji;Sungyeop Joung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.190-200
    • /
    • 2023
  • As the field of application of in-situ gamma spectroscopy is diversified, proficiency is required for consistent and accurate analysis. In this study, a program was developed to virtually create gamma energy spectra of artificial nuclides, which are difficult to obtain through actual measurements, for training. The virtual spectrum was created by synthesizing the spectra of the background radiation obtained through actual measurement and the theoretical spectra of the artificial radionuclides obtained by a Monte Carlo simulation. Since the theoretical spectrum can only be obtained for a given geometrical structure, representative major geometries for in-situ measurement (ground surface, concrete wall, radioactive waste drum) and the detectors (HPGe, NaI(Tl), LaBr3(Ce)) were predetermined. Generated virtual spectra were verified in terms of validity and harmonization by gamma spectrometry and energy calibration. As a result, it was confirmed that the energy calibration results including the peaks of the measured spectrum and the peaks of the theoretical spectrum showed differences of less than 1 keV from the actual energies, and that the calculated radioactivity showed a difference within 20% from the actual inputted radioactivity. The verified data were assembled into a database and a program that can generate a virtual spectrum of desired condition was developed.

A BIM-based Automated Framework for Formwork Planning on Construction Sites

  • Xu, Maozeng;Mei, Zhongya;Tan, Yi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.52-61
    • /
    • 2017
  • Considering its significant impact on the cost and schedule of construction projects, formwork as one part of temporary facility categories in construction should be arranged precisely. Current practice in the formwork planning is often conducted manually and repetitively, causing low efficiency and time waste. This study proposes an automated framework to generate more accurate and detailed formwork plans by utilizing information from building information modeling (BIM) considering the adequate geometric and semantic information provided by the BIM model. The dimensions and quantities information of elements in a building can be extracted automatically. Then, a rule is prepared for calculating the required forms erected around elements based on the contact areas. Finally, an algorithm of integrating first fit decreasing (FFD) with coordinated bottom left (CBL) is applied to automatically generate the formwork plan. The BIM-based automated planning framework is demonstrated by an illustrative example. The results show that the proposed framework can generate the formwork plan accurately and automatically, and significantly improve the efficiency in the formwork plan and reuse.

  • PDF

Characteristics of Recycled Fine Aggregate by Sodium Carbonated Water (탄산나트륨을 이용하여 제조한 순환잔골재의 품질 특성)

  • Hong, Sung-Rog;Kim, Ha-Seog;Kwak, Eun-Gu;Park, Sun-Gyu;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Amount of disposed construction materials like waste concrete is growing fast and use of the recycled aggregate for concrete has been seriously considered. But the use of the recycled aggregate is very limited because recycled aggregate has very low quality. Therefore, quality of recycled aggregate is very important in the manufacturing of recycled aggregate concrete. We have studied a series of research according to chemical processes and investigate the alkaline elimination effect of recycled aggregate and quality variation of recycled aggregate by sodium carbonate. Thereafter we have evaluated quality of recycled fine aggregate and experimented quality of this aggregate. As a results, we find that it is easy to eliminate the calcium hydroxide in recycled aggregate by sodium carbonate and the quality of recycled aggregate increase by elimination of alkaline.

  • PDF