• Title/Summary/Keyword: concrete waste

Search Result 1,106, Processing Time 0.029 seconds

Behavior of sediment from the dam FERGOUG in road construction

  • Benaissa, Assia;Aloui, Zehour;Ghembaza, Moulay S.;Levacher, Daniel;Sebaibi, Yahia
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2016
  • In Algeria, wastes are often stored in such conditions that do not meet standards. Today and more than ever, we really must implement an environmentally management of wastes. Recovery of waste in Algeria has a considerable delay due to the absence of a policy favorable to the development of waste management. But many researchers have shown the possibility to reuse dredged sediments in road construction. Through Europe, recent research works have been already performed on dam sediments. Present study fits into the context of the valorization of dredged sediments from Fergoug dam. They are found in considerable quantities and mainly composed of mineral phases, organic matters and water. The reservoir sedimentation poses problems for the environment and water storage, dredging becomes necessary. Civil engineering is a common way of recycling for such materials. Dredged sediments have not the required mechanical characteristics recommended by the standards as GTR guide (LCPC-SETRA 1992). So as to obtain mechanical performance, dredged sediment can be treated with cement, lime, or replaced materials like quarry sand. An experimental study has been conducted to determine physical and mechanical characteristics of sediments dredged from dam. Then different mixtures of sediment and/or quarry sand with hydraulic binders are proposed for improving the grain size distribution of the mixes. Finally, according these mixtures, different formulations have been tested as alternative materials with dredged sediments.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF

Influence of Mixtures and Curing Conditions on Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials (배합 및 양생조건이 3성분계 포졸란재를 이용한 RPC의 강도발현 특성에 미치는 영향)

  • Janchivdorj, Khulgadai;Choi, Seung-Hoon;So, Hyoung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • This study discussed the influence of mixtures and curing conditions on the development of strength and microstructure of RPC using ternary pozzolanic materials. Through pilot experiment, various RPC was manufactured by adding single or mixed ternary pozzolanic materials such as silica fume, blast furnace slag and fly ash by mass of cement, up to 0~65%, and cured by using 4 types of method which are water and air-dried curing at $20^{\circ}C$, steam and hot-water curing at $90^{\circ}C$. The results show that the use of ternary pozzolanic materials and a suitable curing method are an effective method for improving development of strength and microstructure of RPC. The unit volume of cement was greatly reduced in RPC with ternary pozzolanic materials and unlike hydration reaction in cement, the pozzolanic reaction noticeably contributes to a reduction in hydration heat and dry shrinkage. A considerable improvement was found in the flexural strength of RPC using ternary pozzolanic materials, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser by using the ternary pozzolanic materials than the original RPC containing silica fume only.

Evaluation of Bottom Ash on the Application for the Aggregate of Concrete (콘크리트용 골재로서의 Bottom Ash 활용성 평가)

  • Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • In this study, as one of solutions associated with the shortage of treatment area of industrial waste and the containment of its harmful components, the bottom ash which is known to be by-products of thermoelectric power plant was selected and its applicability for aggregate of concrete mixture was measured. Hardness test, sieve analysis, water-absorption test and SEM analysis were carried out to investigate the possibility of using bottom ash as a replacement of coarse and fine aggregate. Chemical analyses such as ignition loss test and X-ray incidence were carried out also. In addition, values for slump, strength, permeability, freeze and thaw, and carbonation were evaluated in terms of effects of replacement ratio of bottom ash. As the results, it was found that, though bottom ash is in short supply of fine particles and is in lack of cohesion, these problems can be solved by partially mixing with natural aggregates or improving in a process of production. In addition, bottom ash has not only advantage of durability but also acquirement of general compressive strengths in case that a certain proportion of natural aggregate is applied to mixture, in spite that unit water or chemical admixture should be increased to acquire good workability due to plenty of porosity.

  • PDF

Characterization of Leaching Behaviour of Recycled Concrete for Environmental Assessment (용출특성규명을 통한 재생골재 환경성 평가)

  • Kang, S.H.;Lee, S.H.;Kwak, K.S.;Lee, J.Y.;Chung, M.K.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • We conducted several different leaching experiments for assessing the potential environmental risk when utilizing recycled concrete for stabilizing bridge pier. The methods include continuous batch leaching test (DIN 38414-S4), availability test (NEN 7341), pH-stat test (CEN/TC 292/WG6) and tank diffusion test (NEN 7345). The concentration ranges vary depending on the testing method. Nearly all the trace elements were low, some elements recording under detection limit. The maximum concentrations for trace elements leached throughout the whole tests are (as mg/L); Cd (0.029), Cu (0.437), Pb (0.14), Ni, Zn (0.95), Hg (0.005). Although the testing methods we used in this study are much more rigorous than other commonly adapted method including TCLP and domestic testing method for solid waste, the trace elemental concentrations are under the criteria for hazardous material set by the TCLP and domestic method. The result seems to suggest that applying the recycled concrete on stream water will be accepatable practice as for as trace elements are concerned. However, the influence of inorganics such as Ca, Mg, Ni and $SO_4^{2-}$ on aquatic ecology should be further examined.

Development of the Testing Method for Impurity Content in Recycled Aggregate for Concrete Structure (구조체 콘크리트용 순화골재의 이물질 함유량 시험방법 개발)

  • Lee, Do-Heun;Jun, Myoung-Hoon;Jaung, Jae-Dong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.72-80
    • /
    • 2005
  • A recycled aggregate contains impurities that affect negative effects on physical properties of concrete. Therefore, a test method for examining impurities content in recycled aggregate is necessary before use of recycled aggregate. In this study, the test method by visual examination for separating impurities in recycled fine and coarse aggregates was developed. The results of the test are as follow: 1. The current KS F 2576 was necessary for comprehensive revision including types of tested recycled aggregate, definition of terminology, quantity of sample, and test method. 2. Visual examination is appropriate for larger than impurity panicle size of 1.2mm, and the larger panicle size the shorter time was required. 3. For the impurity content test by visual examination, the easiness and accuracy of the test can be obtained from the condition of sample weight of 30 grams with particle size of 2.5mm to 5mm for recycled fine aggregate and the condition of sample weight of 1 kilogram with panicle size of larger than 5mm for recycled coarse aggregate.

  • PDF

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.